The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Bibliography entry dJHS

author
de Jong, A. J. and He, Xuhua and Starr, Jason Michael
title
Families of rationally simply connected varieties over surfaces and torsors for semisimple groups
year
2011
journal
Publ. Math. Inst. Hautes Études Sci.
number
114
pages
1–85
url
https://dx.doi.org/10.1007/s10240-011-0035-1

@ARTICLE{dJHS,
    AUTHOR = "de Jong, A. J. and He, Xuhua and Starr, Jason Michael",
    TITLE = "Families of rationally simply connected varieties over surfaces and torsors for semisimple groups",
    JOURNAL = "Publ. Math. Inst. Hautes \'Etudes Sci.",
    NUMBER = "114",
    YEAR = "2011",
    PAGES = "1--85",
    ISSN = "0073-8301",
    URL = "https://dx.doi.org/10.1007/s10240-011-0035-1"
}

      

This item is referenced in 1 tag:

  • in Theorem 91.15.11: Algebraicity of the stack of curves, which cites Proposition 3.3, page 8 of dJHS