The Stacks project

Lemma 42.68.41. Let $R$ be a Noetherian local ring. Let $\mathfrak q \subset R$ be a prime with $\dim (R/\mathfrak q) = 1$. Let $\varphi : M \to N$ be a homomorphism of finite $R$-modules. Assume there exist $x_1, \ldots , x_ l \in M$ and $y_1, \ldots , y_ l \in M$ with the following properties

  1. $M = \langle x_1, \ldots , x_ l\rangle $,

  2. $\langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \cong R/\mathfrak q$ for $i = 1, \ldots , l$,

  3. $N = \langle y_1, \ldots , y_ l\rangle $, and

  4. $\langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle \cong R/\mathfrak q$ for $i = 1, \ldots , l$.

Then $\varphi $ is injective if and only if $\varphi _{\mathfrak q}$ is an isomorphism, and in this case we have

\[ \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) = \text{ord}_{R/\mathfrak q}(f) \]

where $f \in \kappa (\mathfrak q)$ is the element such that

\[ [\varphi (x_1), \ldots , \varphi (x_ l)] = f [y_1, \ldots , y_ l] \]

in $\det _{\kappa (\mathfrak q)}(N_{\mathfrak q})$.

Proof. First, note that the lemma holds in case $l = 1$. Namely, in this case $x_1$ is a basis of $M$ over $R/\mathfrak q$ and $y_1$ is a basis of $N$ over $R/\mathfrak q$ and we have $\varphi (x_1) = fy_1$ for some $f \in R$. Thus $\varphi $ is injective if and only if $f \not\in \mathfrak q$. Moreover, $\mathop{\mathrm{Coker}}(\varphi ) = R/(f, \mathfrak q)$ and hence the lemma holds by definition of $\text{ord}_{R/q}(f)$ (see Algebra, Definition 10.121.2).

In fact, suppose more generally that $\varphi (x_ i) = f_ iy_ i$ for some $f_ i \in R$, $f_ i \not\in \mathfrak q$. Then the induced maps

\[ \langle x_1, \ldots , x_ i\rangle / \langle x_1, \ldots , x_{i - 1}\rangle \longrightarrow \langle y_1, \ldots , y_ i\rangle / \langle y_1, \ldots , y_{i - 1}\rangle \]

are all injective and have cokernels isomorphic to $R/(f_ i, \mathfrak q)$. Hence we see that

\[ \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) = \sum \text{ord}_{R/\mathfrak q}(f_ i). \]

On the other hand it is clear that

\[ [\varphi (x_1), \ldots , \varphi (x_ l)] = f_1 \ldots f_ l [y_1, \ldots , y_ l] \]

in this case from the admissible relation (b) for symbols. Hence we see the result holds in this case also.

We prove the general case by induction on $l$. Assume $l > 1$. Let $i \in \{ 1, \ldots , l\} $ be minimal such that $\varphi (x_1) \in \langle y_1, \ldots , y_ i\rangle $. We will argue by induction on $i$. If $i = 1$, then we get a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \langle x_1 \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle \ar[r] \ar[d] & \langle x_1, \ldots , x_ l \rangle / \langle x_1 \rangle \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \langle y_1 \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle \ar[r] & \langle y_1, \ldots , y_ l \rangle / \langle y_1 \rangle \ar[r] & 0 } \]

and the lemma follows from the snake lemma and induction on $l$. Assume now that $i > 1$. Write $\varphi (x_1) = a_1 y_1 + \ldots + a_{i - 1} y_{i - 1} + a y_ i$ with $a_ j, a \in R$ and $a \not\in \mathfrak q$ (since otherwise $i$ was not minimal). Set

\[ x'_ j = \left\{ \begin{matrix} x_ j & \text{if} & j = 1 \\ ax_ j & \text{if} & j \geq 2 \end{matrix} \right. \quad \text{and}\quad y'_ j = \left\{ \begin{matrix} y_ j & \text{if} & j < i \\ ay_ j & \text{if} & j \geq i \end{matrix} \right. \]

Let $M' = \langle x'_1, \ldots , x'_ l \rangle $ and $N' = \langle y'_1, \ldots , y'_ l \rangle $. Since $\varphi (x'_1) = a_1 y'_1 + \ldots + a_{i - 1} y'_{i - 1} + y'_ i$ by construction and since for $j > 1$ we have $\varphi (x'_ j) = a\varphi (x_ i) \in \langle y'_1, \ldots , y'_ l\rangle $ we get a commutative diagram of $R$-modules and maps

\[ \xymatrix{ M' \ar[d] \ar[r]_{\varphi '} & N' \ar[d] \\ M \ar[r]^\varphi & N } \]

By the result of the second paragraph of the proof we know that $\text{length}_ R(M/M') = (l - 1)\text{ord}_{R/\mathfrak q}(a)$ and similarly $\text{length}_ R(M/M') = (l - i + 1)\text{ord}_{R/\mathfrak q}(a)$. By a diagram chase this implies that

\[ \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi ')) = \text{length}_ R(\mathop{\mathrm{Coker}}(\varphi )) + i\ \text{ord}_{R/\mathfrak q}(a). \]

On the other hand, it is clear that writing

\[ [\varphi (x_1), \ldots , \varphi (x_ l)] = f [y_1, \ldots , y_ l], \quad [\varphi '(x'_1), \ldots , \varphi (x'_ l)] = f' [y'_1, \ldots , y'_ l] \]

we have $f' = a^ if$. Hence it suffices to prove the lemma for the case that $\varphi (x_1) = a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i$, i.e., in the case that $a = 1$. Next, recall that

\[ [y_1, \ldots , y_ l] = [y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l] \]

by the admissible relations for symbols. The sequence $y_1, \ldots , y_{i - 1}, a_1y_1 + \ldots + a_{i - 1}y_{i - 1} + y_ i, y_{i + 1}, \ldots , y_ l$ satisfies the conditions (3), (4) of the lemma also. Hence, we may actually assume that $\varphi (x_1) = y_ i$. In this case, note that we have $\mathfrak q x_1 = 0$ which implies also $\mathfrak q y_ i = 0$. We have

\[ [y_1, \ldots , y_ l] = - [y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l] \]

by the third of the admissible relations defining $\det _{\kappa (\mathfrak q)}(N_{\mathfrak q})$. Hence we may replace $y_1, \ldots , y_ l$ by the sequence $y'_1, \ldots , y'_ l = y_1, \ldots , y_{i - 2}, y_ i, y_{i - 1}, y_{i + 1}, \ldots , y_ l$ (which also satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant $i$ by $1$ and we win by induction on $i$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02QB. Beware of the difference between the letter 'O' and the digit '0'.