The Stacks project

Lemma 42.12.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$, $Y$, and $Z$ be locally of finite type over $S$. Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms. Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_ k(X) \to Z_ k(Z)$.

Proof. Let $W \subset X$ be an integral closed subscheme of dimension $k$. Consider $W' = f(W) \subset Y$ and $W'' = g(f(W)) \subset Z$. Since $f$, $g$ are proper we see that $W'$ (resp. $W''$) is an integral closed subscheme of $Y$ (resp. $Z$). We have to show that $g_*(f_*[W]) = (g \circ f)_*[W]$. If $\dim _\delta (W'') < k$, then both sides are zero. If $\dim _\delta (W'') = k$, then we see the induced morphisms

\[ W \longrightarrow W' \longrightarrow W'' \]

both satisfy the hypotheses of Lemma 42.11.1. Hence

\[ g_*(f_*[W]) = \deg (W/W')\deg (W'/W'')[W''], \quad (g \circ f)_*[W] = \deg (W/W'')[W'']. \]

Then we can apply Morphisms, Lemma 29.51.9 to conclude. $\square$


Comments (2)

Comment #4893 by Peng DU on

In line 3 and 7 of the proof, the term (f∘g)∗[W] should be (g∘f)∗[W].

There are also:

  • 2 comment(s) on Section 42.12: Proper pushforward

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02R5. Beware of the difference between the letter 'O' and the digit '0'.