Processing math: 100%

The Stacks project

42.18 Principal divisors and pushforward

The first lemma implies that the pushforward of a principal divisor along a generically finite morphism is a principal divisor.

Lemma 42.18.1. Let (S, \delta ) be as in Situation 42.7.1. Let X, Y be locally of finite type over S. Assume X, Y are integral and n = \dim _\delta (X) = \dim _\delta (Y). Let p : X \to Y be a dominant proper morphism. Let f \in R(X)^*. Set

g = \text{Nm}_{R(X)/R(Y)}(f).

Then we have p_*\text{div}(f) = \text{div}(g).

Proof. Let Z \subset Y be an integral closed subscheme of \delta -dimension n - 1. We want to show that the coefficient of [Z] in p_*\text{div}(f) and \text{div}(g) are equal. We may apply Lemma 42.16.2 to the morphism p : X \to Y and the generic point \xi \in Z. Hence we may replace Y by an affine open neighbourhood of \xi and assume that p : X \to Y is finite. Write Y = \mathop{\mathrm{Spec}}(R) and X = \mathop{\mathrm{Spec}}(A) with p induced by a finite homomorphism R \to A of Noetherian domains which induces an finite field extension L/K of fraction fields. Now we have f \in L, g = \text{Nm}(f) \in K, and a prime \mathfrak p \subset R with \dim (R_{\mathfrak p}) = 1. The coefficient of [Z] in \text{div}_ Y(g) is \text{ord}_{R_\mathfrak p}(g). The coefficient of [Z] in p_*\text{div}_ X(f) is

\sum \nolimits _{\mathfrak q\text{ lying over }\mathfrak p} [\kappa (\mathfrak q) : \kappa (\mathfrak p)] \text{ord}_{A_{\mathfrak q}}(f)

The desired equality therefore follows from Algebra, Lemma 10.121.8. \square

An important role in the discussion of principal divisors is played by the “universal” principal divisor [0] - [\infty ] on \mathbf{P}^1_ S. To make this more precise, let us denote

42.18.1.1
\begin{equation} \label{chow-equation-zero-infty} D_0, D_\infty \subset \mathbf{P}^1_ S = \underline{\text{Proj}}_ S(\mathcal{O}_ S[T_0, T_1]) \end{equation}

the closed subscheme cut out by the section T_1, resp. T_0 of \mathcal{O}(1). These are effective Cartier divisors, see Divisors, Definition 31.13.1 and Lemma 31.14.10. The following lemma says that loosely speaking we have “\text{div}(T_1/T_0) = [D_0] - [D_1]” and that this is the universal principal divisor.

Lemma 42.18.2. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Assume X is integral and n = \dim _\delta (X). Let f \in R(X)^*. Let U \subset X be a nonempty open such that f corresponds to a section f \in \Gamma (U, \mathcal{O}_ X^*). Let Y \subset X \times _ S \mathbf{P}^1_ S be the closure of the graph of f : U \to \mathbf{P}^1_ S. Then

  1. the projection morphism p : Y \to X is proper,

  2. p|_{p^{-1}(U)} : p^{-1}(U) \to U is an isomorphism,

  3. the pullbacks Y_0 = q^{-1}D_0 and Y_\infty = q^{-1}D_\infty via the morphism q : Y \to \mathbf{P}^1_ S are defined (Divisors, Definition 31.13.12),

  4. we have

    \text{div}_ Y(f) = [Y_0]_{n - 1} - [Y_\infty ]_{n - 1}
  5. we have

    \text{div}_ X(f) = p_*\text{div}_ Y(f)
  6. if we view Y_0 and Y_\infty as closed subschemes of X via the morphism p then we have

    \text{div}_ X(f) = [Y_0]_{n - 1} - [Y_\infty ]_{n - 1}

Proof. Since X is integral, we see that U is integral. Hence Y is integral, and (1, f)(U) \subset Y is an open dense subscheme. Also, note that the closed subscheme Y \subset X \times _ S \mathbf{P}^1_ S does not depend on the choice of the open U, since after all it is the closure of the one point set \{ \eta '\} = \{ (1, f)(\eta )\} where \eta \in X is the generic point. Having said this let us prove the assertions of the lemma.

For (1) note that p is the composition of the closed immersion Y \to X \times _ S \mathbf{P}^1_ S = \mathbf{P}^1_ X with the proper morphism \mathbf{P}^1_ X \to X. As a composition of proper morphisms is proper (Morphisms, Lemma 29.41.4) we conclude.

It is clear that Y \cap U \times _ S \mathbf{P}^1_ S = (1, f)(U). Thus (2) follows. It also follows that \dim _\delta (Y) = n.

Note that q(\eta ') = f(\eta ) is not contained in D_0 or D_\infty since f \in R(X)^*. Hence (3) by Divisors, Lemma 31.13.13. We obtain \dim _\delta (Y_0) = n - 1 and \dim _\delta (Y_\infty ) = n - 1 from Lemma 42.16.1.

Consider the effective Cartier divisor Y_0. At every point \xi \in Y_0 we have f \in \mathcal{O}_{Y, \xi } and the local equation for Y_0 is given by f. In particular, if \delta (\xi ) = n - 1 so \xi is the generic point of a integral closed subscheme Z of \delta -dimension n - 1, then we see that the coefficient of [Z] in \text{div}_ Y(f) is

\text{ord}_ Z(f) = \text{length}_{\mathcal{O}_{Y, \xi }} (\mathcal{O}_{Y, \xi }/f\mathcal{O}_{Y, \xi }) = \text{length}_{\mathcal{O}_{Y, \xi }} (\mathcal{O}_{Y_0, \xi })

which is the coefficient of [Z] in [Y_0]_{n - 1}. A similar argument using the rational function 1/f shows that -[Y_\infty ] agrees with the terms with negative coefficients in the expression for \text{div}_ Y(f). Hence (4) follows.

Note that D_0 \to S is an isomorphism. Hence we see that X \times _ S D_0 \to X is an isomorphism as well. Clearly we have Y_0 = Y \cap X \times _ S D_0 (scheme theoretic intersection) inside X \times _ S \mathbf{P}^1_ S. Hence it is really the case that Y_0 \to X is a closed immersion. It follows that

p_*\mathcal{O}_{Y_0} = \mathcal{O}_{Y'_0}

where Y'_0 \subset X is the image of Y_0 \to X. By Lemma 42.12.4 we have p_*[Y_0]_{n - 1} = [Y'_0]_{n - 1}. The same is true for D_\infty and Y_\infty . Hence (6) is a consequence of (5). Finally, (5) follows immediately from Lemma 42.18.1. \square

The following lemma says that the degree of a principal divisor on a proper curve is zero.

Lemma 42.18.3. Let K be any field. Let X be a 1-dimensional integral scheme endowed with a proper morphism c : X \to \mathop{\mathrm{Spec}}(K). Let f \in K(X)^* be an invertible rational function. Then

\sum \nolimits _{x \in X \text{ closed}} [\kappa (x) : K] \text{ord}_{\mathcal{O}_{X, x}}(f) = 0

where \text{ord} is as in Algebra, Definition 10.121.2. In other words, c_*\text{div}(f) = 0.

Proof. Consider the diagram

\xymatrix{ Y \ar[r]_ p \ar[d]_ q & X \ar[d]^ c \\ \mathbf{P}^1_ K \ar[r]^-{c'} & \mathop{\mathrm{Spec}}(K) }

that we constructed in Lemma 42.18.2 starting with X and the rational function f over S = \mathop{\mathrm{Spec}}(K). We will use all the results of this lemma without further mention. We have to show that c_*\text{div}_ X(f) = c_*p_*\text{div}_ Y(f) = 0. This is the same as proving that c'_*q_*\text{div}_ Y(f) = 0. If q(Y) is a closed point of \mathbf{P}^1_ K then we see that \text{div}_ X(f) = 0 and the lemma holds. Thus we may assume that q is dominant. Suppose we can show that q : Y \to \mathbf{P}^1_ K is finite locally free of degree d (see Morphisms, Definition 29.48.1). Since \text{div}_ Y(f) = [q^{-1}D_0]_0 - [q^{-1}D_\infty ]_0 we see (by definition of flat pullback) that \text{div}_ Y(f) = q^*([D_0]_0 - [D_\infty ]_0). Then by Lemma 42.15.2 we get q_*\text{div}_ Y(f) = d([D_0]_0 - [D_\infty ]_0). Since clearly c'_*[D_0]_0 = c'_*[D_\infty ]_0 we win.

It remains to show that q is finite locally free. (It will automatically have some given degree as \mathbf{P}^1_ K is connected.) Since \dim (\mathbf{P}^1_ K) = 1 we see that q is finite for example by Lemma 42.16.2. All local rings of \mathbf{P}^1_ K at closed points are regular local rings of dimension 1 (in other words discrete valuation rings), since they are localizations of K[T] (see Algebra, Lemma 10.114.1). Hence for y\in Y closed the local ring \mathcal{O}_{Y, y} will be flat over \mathcal{O}_{\mathbf{P}^1_ K, q(y)} as soon as it is torsion free (More on Algebra, Lemma 15.22.11). This is obviously the case as \mathcal{O}_{Y, y} is a domain and q is dominant. Thus q is flat. Hence q is finite locally free by Morphisms, Lemma 29.48.2. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.