## Tag `033O`

Chapter 27: Properties of Schemes > Section 27.7: Normal schemes

Remark 27.7.8. Let $X$ be a normal scheme. If $X$ is locally Noetherian then we see that $X$ is integral if and only if $X$ is connected, see Lemma 27.7.7. But there exists a connected affine scheme $X$ such that $\mathcal{O}_{X, x}$ is a domain for all $x \in X$, but $X$ is not irreducible, see Examples, Section 95.5. This example is even a normal scheme (proof omitted), so beware!

The code snippet corresponding to this tag is a part of the file `properties.tex` and is located in lines 875–885 (see updates for more information).

```
\begin{remark}
\label{remark-normal-connected-irreducible}
Let $X$ be a normal scheme. If $X$ is locally Noetherian then we see that
$X$ is integral if and only if $X$ is connected, see
Lemma \ref{lemma-normal-locally-Noetherian}.
But there exists a connected affine scheme $X$ such that
$\mathcal{O}_{X, x}$ is a domain for all $x \in X$, but $X$ is not
irreducible, see Examples, Section
\ref{examples-section-connected-locally-integral-not-integral}.
This example is even a normal scheme (proof omitted), so beware!
\end{remark}
```

## Comments (0)

## Add a comment on tag `033O`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There is also 1 comment on Section 27.7: Properties of Schemes.