The Stacks project

68.5 Conditions on algebraic spaces

In this section we discuss the relationship between various natural conditions on algebraic spaces we have seen above. Please read Section 68.6 to get a feeling for the meaning of these conditions.

Lemma 68.5.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Consider the following conditions on $X$:

  • $(\alpha )$ For every $x \in |X|$, the equivalent conditions of Lemma 68.4.2 hold.

  • $(\beta )$ For every $x \in |X|$, the equivalent conditions of Lemma 68.4.3 hold.

  • $(\gamma )$ For every $x \in |X|$, the equivalent conditions of Lemma 68.4.5 hold.

  • $(\delta )$ The equivalent conditions of Lemma 68.4.6 hold.

  • $(\epsilon )$ The equivalent conditions of Lemma 68.4.7 hold.

  • $(\zeta )$ The space $X$ is Zariski locally quasi-separated.

  • $(\eta )$ The space $X$ is quasi-separated

  • $(\theta )$ The space $X$ is representable, i.e., $X$ is a scheme.

  • $(\iota )$ The space $X$ is a quasi-separated scheme.

We have

\[ \xymatrix{ & (\theta ) \ar@{=>}[rd] & & & & \\ (\iota ) \ar@{=>}[ru] \ar@{=>}[rd] & & (\zeta ) \ar@{=>}[r] & (\epsilon ) \ar@{=>}[r] & (\delta ) \ar@{=>}[r] & (\gamma ) \ar@{<=>}[r] & (\alpha ) + (\beta ) \\ & (\eta ) \ar@{=>}[ru] & & & & } \]

Proof. The implication $(\gamma ) \Leftrightarrow (\alpha ) + (\beta )$ is immediate. The implications in the diamond on the left are clear from the definitions.

Assume $(\zeta )$, i.e., that $X$ is Zariski locally quasi-separated. Then $(\epsilon )$ holds by Properties of Spaces, Lemma 66.6.6.

Assume $(\epsilon )$. By Lemma 68.4.7 there exists a Zariski open covering $X = \bigcup X_ i$ such that for each $i$ there exists a scheme $U_ i$ and a quasi-compact surjective étale morphism $U_ i \to X_ i$. Choose an $i$ and an affine open subscheme $W \subset U_ i$. It suffices to show that $W \to X$ has universally bounded fibres, since then the family of all these morphisms $W \to X$ covers $X$. To do this we consider the diagram

\[ \xymatrix{ W \times _ X U_ i \ar[r]_-p \ar[d]_ q & U_ i \ar[d] \\ W \ar[r] & X } \]

Since $W \to X$ factors through $X_ i$ we see that $W \times _ X U_ i = W \times _{X_ i} U_ i$, and hence $q$ is quasi-compact. Since $W$ is affine this implies that the scheme $W \times _ X U_ i$ is quasi-compact. Thus we may apply Morphisms, Lemma 29.57.9 and we conclude that $p$ has universally bounded fibres. From Lemma 68.3.4 we conclude that $W \to X$ has universally bounded fibres as well.

Assume $(\delta )$. Let $U$ be an affine scheme, and let $U \to X$ be an étale morphism. By assumption the fibres of the morphism $U \to X$ are universally bounded. Thus also the fibres of both projections $R = U \times _ X U \to U$ are universally bounded, see Lemma 68.3.3. And by Lemma 68.3.2 also the fibres of $R \to X$ are universally bounded. Hence for any $x \in X$ the fibres of $|U| \to |X|$ and $|R| \to |X|$ over $x$ are finite, see Lemma 68.3.6. In other words, the equivalent conditions of Lemma 68.4.5 hold. This proves that $(\delta ) \Rightarrow (\gamma )$. $\square$

Lemma 68.5.2. Let $S$ be a scheme. Let $\mathcal{P}$ be one of the properties $(\alpha )$, $(\beta )$, $(\gamma )$, $(\delta )$, $(\epsilon )$, $(\zeta )$, or $(\theta )$ of algebraic spaces listed in Lemma 68.5.1. Then if $X$ is an algebraic space over $S$, and $X = \bigcup X_ i$ is a Zariski open covering such that each $X_ i$ has $\mathcal{P}$, then $X$ has $\mathcal{P}$.

Proof. Let $X$ be an algebraic space over $S$, and let $X = \bigcup X_ i$ is a Zariski open covering such that each $X_ i$ has $\mathcal{P}$.

The case $\mathcal{P} = (\alpha )$. The condition $(\alpha )$ for $X_ i$ means that for every $x \in |X_ i|$ and every affine scheme $U$, and étale morphism $\varphi : U \to X_ i$ the fibre of $\varphi : |U| \to |X_ i|$ over $x$ is finite. Consider $x \in X$, an affine scheme $U$ and an étale morphism $U \to X$. Since $X = \bigcup X_ i$ is a Zariski open covering there exits a finite affine open covering $U = U_1 \cup \ldots \cup U_ n$ such that each $U_ j \to X$ factors through some $X_{i_ j}$. By assumption the fibres of $|U_ j | \to |X_{i_ j}|$ over $x$ are finite for $j = 1, \ldots , n$. Clearly this means that the fibre of $|U| \to |X|$ over $x$ is finite. This proves the result for $(\alpha )$.

The case $\mathcal{P} = (\beta )$. The condition $(\beta )$ for $X_ i$ means that every $x \in |X_ i|$ is represented by a monomorphism from the spectrum of a field towards $X_ i$. Hence the same follows for $X$ as $X_ i \to X$ is a monomorphism and $X = \bigcup X_ i$.

The case $\mathcal{P} = (\gamma )$. Note that $(\gamma ) = (\alpha ) + (\beta )$ by Lemma 68.5.1 hence the lemma for $(\gamma )$ follows from the cases treated above.

The case $\mathcal{P} = (\delta )$. The condition $(\delta )$ for $X_ i$ means there exist schemes $U_{ij}$ and étale morphisms $U_{ij} \to X_ i$ with universally bounded fibres which cover $X_ i$. These schemes also give an étale surjective morphism $\coprod U_{ij} \to X$ and $U_{ij} \to X$ still has universally bounded fibres.

The case $\mathcal{P} = (\epsilon )$. The condition $(\epsilon )$ for $X_ i$ means we can find a set $J_ i$ and morphisms $\varphi _{ij} : U_{ij} \to X_ i$ such that each $\varphi _{ij}$ is étale, both projections $U_{ij} \times _{X_ i} U_{ij} \to U_{ij}$ are quasi-compact, and $\coprod _{j \in J_ i} U_{ij} \to X_ i$ is surjective. In this case the compositions $U_{ij} \to X_ i \to X$ are étale (combine Morphisms, Lemmas 29.36.3 and 29.36.9 and Spaces, Lemmas 65.5.4 and 65.5.3 ). Since $X_ i \subset X$ is a subspace we see that $U_{ij} \times _{X_ i} U_{ij} = U_{ij} \times _ X U_{ij}$, and hence the condition on fibre products is preserved. And clearly $\coprod _{i, j} U_{ij} \to X$ is surjective. Hence $X$ satisfies $(\epsilon )$.

The case $\mathcal{P} = (\zeta )$. The condition $(\zeta )$ for $X_ i$ means that $X_ i$ is Zariski locally quasi-separated. It is immediately clear that this means $X$ is Zariski locally quasi-separated.

For $(\theta )$, see Properties of Spaces, Lemma 66.13.1. $\square$

Lemma 68.5.3. Let $S$ be a scheme. Let $\mathcal{P}$ be one of the properties $(\beta )$, $(\gamma )$, $(\delta )$, $(\epsilon )$, or $(\theta )$ of algebraic spaces listed in Lemma 68.5.1. Let $X$, $Y$ be algebraic spaces over $S$. Let $X \to Y$ be a representable morphism. If $Y$ has property $\mathcal{P}$, so does $X$.

Proof. Assume $f : X \to Y$ is a representable morphism of algebraic spaces, and assume that $Y$ has $\mathcal{P}$. Let $x \in |X|$, and set $y = f(x) \in |Y|$.

The case $\mathcal{P} = (\beta )$. Condition $(\beta )$ for $Y$ means there exists a monomorphism $\mathop{\mathrm{Spec}}(k) \to Y$ representing $y$. The fibre product $X_ y = \mathop{\mathrm{Spec}}(k) \times _ Y X$ is a scheme, and $x$ corresponds to a point of $X_ y$, i.e., to a monomorphism $\mathop{\mathrm{Spec}}(k') \to X_ y$. As $X_ y \to X$ is a monomorphism also we see that $x$ is represented by the monomorphism $\mathop{\mathrm{Spec}}(k') \to X_ y \to X$. In other words $(\beta )$ holds for $X$.

The case $\mathcal{P} = (\gamma )$. Since $(\gamma ) \Rightarrow (\beta )$ we have seen in the preceding paragraph that $y$ and $x$ can be represented by monomorphisms as in the following diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(k') \ar[r]_-x \ar[d] & X \ar[d] \\ \mathop{\mathrm{Spec}}(k) \ar[r]^-y & Y } \]

Also, by definition of property $(\gamma )$ via Lemma 68.4.5 (2) there exist schemes $V_ i$ and étale morphisms $V_ i \to Y$ such that $\coprod V_ i \to Y$ is surjective and for each $i$, setting $R_ i = V_ i \times _ Y V_ i$ the fibres of both

\[ |V_ i| \longrightarrow |Y| \quad \text{and}\quad |R_ i| \longrightarrow |Y| \]

over $y$ are finite. This means that the schemes $(V_ i)_ y$ and $(R_ i)_ y$ are finite schemes over $y = \mathop{\mathrm{Spec}}(k)$. As $X \to Y$ is representable, the fibre products $U_ i = V_ i \times _ Y X$ are schemes. The morphisms $U_ i \to X$ are étale, and $\coprod U_ i \to X$ is surjective. Finally, for each $i$ we have

\[ (U_ i)_ x = (V_ i \times _ Y X)_ x = (V_ i)_ y \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k') \]

and

\[ (U_ i \times _ X U_ i)_ x = \left((V_ i \times _ Y X) \times _ X (V_ i \times _ Y X)\right)_ x = (R_ i)_ y \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k') \]

hence these are finite over $k'$ as base changes of the finite schemes $(V_ i)_ y$ and $(R_ i)_ y$. This implies that $(\gamma )$ holds for $X$, again via the second condition of Lemma 68.4.5.

The case $\mathcal{P} = (\delta )$. Let $V \to Y$ be an étale morphism with $V$ an affine scheme. Since $Y$ has property $(\delta )$ this morphism has universally bounded fibres. By Lemma 68.3.3 the base change $V \times _ Y X \to X$ also has universally bounded fibres. Hence the first part of Lemma 68.4.6 applies and we see that $Y$ also has property $(\delta )$.

The case $\mathcal{P} = (\epsilon )$. We will repeatedly use Spaces, Lemma 65.5.5. Let $V_ i \to Y$ be as in Lemma 68.4.7 (2). Set $U_ i = X \times _ Y V_ i$. The morphisms $U_ i \to X$ are étale, and $\coprod U_ i \to X$ is surjective. Because $U_ i \times _ X U_ i = X \times _ Y (V_ i \times _ Y V_ i)$ we see that the projections $U_ i \times _ Y U_ i \to U_ i$ are base changes of the projections $V_ i \times _ Y V_ i \to V_ i$, and so quasi-compact as well. Hence $X$ satisfies Lemma 68.4.7 (2).

The case $\mathcal{P} = (\theta )$. In this case the result is Categories, Lemma 4.8.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03JW. Beware of the difference between the letter 'O' and the digit '0'.