The Stacks project

Theorem 59.83.10. If $k$ is an algebraically closed field, $X$ is a separated, finite type scheme of dimension $\leq 1$ over $k$, and $\mathcal{F}$ is a torsion abelian sheaf on $X_{\acute{e}tale}$, then

  1. $H^ q_{\acute{e}tale}(X, \mathcal{F}) = 0$ for $q > 2$,

  2. $H^ q_{\acute{e}tale}(X, \mathcal{F}) = 0$ for $q > 1$ if $X$ is affine,

  3. $H^ q_{\acute{e}tale}(X, \mathcal{F}) = 0$ for $q > 1$ if $p = \text{char}(k) > 0$ and $\mathcal{F}$ is $p$-power torsion,

  4. $H^ q_{\acute{e}tale}(X, \mathcal{F})$ is finite if $\mathcal{F}$ is constructible and torsion prime to $\text{char}(k)$,

  5. $H^ q_{\acute{e}tale}(X, \mathcal{F})$ is finite if $X$ is proper and $\mathcal{F}$ constructible,

  6. $H^ q_{\acute{e}tale}(X, \mathcal{F}) \to H^ q_{\acute{e}tale}(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $\mathcal{F}$ is torsion prime to $\text{char}(k)$,

  7. $H^ q_{\acute{e}tale}(X, \mathcal{F}) \to H^ q_{\acute{e}tale}(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $X$ is proper,

  8. $H^2_{\acute{e}tale}(X, \mathcal{F}) \to H^2_{\acute{e}tale}(U, \mathcal{F})$ is surjective for all $U \subset X$ open.

Proof. The theorem says that in Situation 59.83.1 statements (1) – (8) hold. Our first step is to replace $X$ by its reduction, which is permissible by Proposition 59.45.4. By Lemma 59.73.2 we can write $\mathcal{F}$ as a filtered colimit of constructible abelian sheaves. Taking cohomology commutes with colimits, see Lemma 59.51.4. Moreover, pullback via $X_{k'} \to X$ commutes with colimits as a left adjoint. Thus it suffices to prove the statements for a constructible sheaf.

In this paragraph we use Lemma 59.83.4 without further mention. Writing $\mathcal{F} = \mathcal{F}_1 \oplus \ldots \oplus \mathcal{F}_ r$ where $\mathcal{F}_ i$ is $\ell _ i$-primary for some prime $\ell _ i$, we may assume that $\ell ^ n$ kills $\mathcal{F}$ for some prime $\ell $. Now consider the exact sequence

\[ 0 \to \mathcal{F}[\ell ] \to \mathcal{F} \to \mathcal{F}/\mathcal{F}[\ell ] \to 0. \]

Thus we see that it suffices to assume that $\mathcal{F}$ is $\ell $-torsion. This means that $\mathcal{F}$ is a constructible sheaf of $\mathbf{F}_\ell $-vector spaces for some prime number $\ell $.

By definition this means there is a dense open $U \subset X$ such that $\mathcal{F}|_ U$ is finite locally constant sheaf of $\mathbf{F}_\ell $-vector spaces. Since $\dim (X) \leq 1$ we may assume, after shrinking $U$, that $U = U_1 \amalg \ldots \amalg U_ n$ is a disjoint union of irreducible schemes (just remove the closed points which lie in the intersections of $\geq 2$ components of $U$). By Lemma 59.83.6 we reduce to the case $\mathcal{F} = j_!\mathcal{G}$ where $\mathcal{G}$ is a finite locally constant sheaf of $\mathbf{F}_\ell $-vector spaces on $U$.

Since we chose $U = U_1 \amalg \ldots \amalg U_ n$ with $U_ i$ irreducible we have

\[ j_!\mathcal{G} = j_{1!}(\mathcal{G}|_{U_1}) \oplus \ldots \oplus j_{n!}(\mathcal{G}|_{U_ n}) \]

where $j_ i : U_ i \to X$ is the inclusion morphism. The case of $j_{i!}(\mathcal{G}|_{U_ i})$ is handled in Lemma 59.83.9. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03SC. Beware of the difference between the letter 'O' and the digit '0'.