Proof.
Let K^\bullet _ i, i \in I be a family of objects of D(\mathcal{A}) indexed by a set I. We claim that the termwise direct sum \bigoplus _{i \in I} K^\bullet _ i is a direct sum in D(\mathcal{A}). Namely, let I^\bullet be a K-injective complex. Then we have
\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(\bigoplus \nolimits _{i \in I} K^\bullet _ i, I^\bullet ) & = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(\bigoplus \nolimits _{i \in I} K^\bullet _ i, I^\bullet ) \\ & = \prod \nolimits _{i \in I} \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet _ i, I^\bullet ) \\ & = \prod \nolimits _{i \in I} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(K^\bullet _ i, I^\bullet ) \end{align*}
as desired. This is sufficient since any complex can be represented by a K-injective complex by Theorem 19.12.6. To construct the product, choose a K-injective resolution K_ i^\bullet \to I_ i^\bullet for each i. Then we claim that \prod _{i \in I} I_ i^\bullet is a product in D(\mathcal{A}). This follows from Derived Categories, Lemma 13.31.5.
\square
Comments (2)
Comment #9963 by Elías Guisado on
Comment #10112 by Elías Guisado on