The Stacks project

Lemma 30.23.2. Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals.

  1. The category $\textit{Coh}(X, \mathcal{I})$ is abelian.

  2. For $U \subset X$ open the restriction functor $\textit{Coh}(X, \mathcal{I}) \to \textit{Coh}(U, \mathcal{I}|_ U)$ is exact.

  3. Exactness in $\textit{Coh}(X, \mathcal{I})$ may be checked by restricting to the members of an open covering of $X$.

Proof. Let $\alpha =(\alpha _ n) : (\mathcal{F}_ n) \to (\mathcal{G}_ n)$ be a morphism of $\textit{Coh}(X, \mathcal{I})$. The cokernel of $\alpha $ is the inverse system $(\mathop{\mathrm{Coker}}(\alpha _ n))$ (details omitted). To describe the kernel let

\[ \mathcal{K}'_{l, m} = \mathop{\mathrm{Im}}(\mathop{\mathrm{Ker}}(\alpha _ l) \to \mathcal{F}_ m) \]

for $l \geq m$. We claim:

  1. the inverse system $(\mathcal{K}'_{l, m})_{l \geq m}$ is eventually constant, say with value $\mathcal{K}'_ m$,

  2. the system $(\mathcal{K}'_ m/\mathcal{I}^ n\mathcal{K}'_ m)_{m \geq n}$ is eventually constant, say with value $\mathcal{K}_ n$,

  3. the system $(\mathcal{K}_ n)$ forms an object of $\textit{Coh}(X, \mathcal{I})$, and

  4. this object is the kernel of $\alpha $.

To see (a), (b), and (c) we may work affine locally, say $X = \mathop{\mathrm{Spec}}(A)$ and $\mathcal{I}$ corresponds to the ideal $I \subset A$. By Lemma 30.23.1 $\alpha $ corresponds to a map $f : M \to N$ of finite $A^\wedge $-modules. Denote $K = \mathop{\mathrm{Ker}}(f)$. Note that $A^\wedge $ is a Noetherian ring (Algebra, Lemma 10.97.6). Choose an integer $c \geq 0$ such that $K \cap I^ n M \subset I^{n - c}K$ for $n \geq c$ (Algebra, Lemma 10.51.2) and which satisfies Algebra, Lemma 10.51.3 for the map $f$ and the ideal $I^\wedge = IA^\wedge $. Then $\mathcal{K}'_{l, m}$ corresponds to the $A$-module

\[ K'_{l, m} = \frac{a^{-1}(I^ lN) + I^ mM}{I^ mM} = \frac{K + I^{l - c}f^{-1}(I^ cN) + I^ mM}{I^ mM} = \frac{K + I^ mM}{I^ mM} \]

where the last equality holds if $l \geq m + c$. So $\mathcal{K}'_ m$ corresponds to the $A$-module $K/K \cap I^ mM$ and $\mathcal{K}'_ m/\mathcal{I}^ n\mathcal{K}'_ m$ corresponds to

\[ \frac{K}{K \cap I^ mM + I^ nK} = \frac{K}{I^ nK} \]

for $m \geq n + c$ by our choice of $c$ above. Hence $\mathcal{K}_ n$ corresponds to $K/I^ nK$.

We prove (d). It is clear from the description on affines above that the composition $(\mathcal{K}_ n) \to (\mathcal{F}_ n) \to (\mathcal{G}_ n)$ is zero. Let $\beta : (\mathcal{H}_ n) \to (\mathcal{F}_ n)$ be a morphism such that $\alpha \circ \beta = 0$. Then $\mathcal{H}_ l \to \mathcal{F}_ l$ maps into $\mathop{\mathrm{Ker}}(\alpha _ l)$. Since $\mathcal{H}_ m = \mathcal{H}_ l/\mathcal{I}^ m\mathcal{H}_ l$ for $l \geq m$ we obtain a system of maps $\mathcal{H}_ m \to \mathcal{K}'_{l, m}$. Thus a map $\mathcal{H}_ m \to \mathcal{K}_ m'$. Since $\mathcal{H}_ n = \mathcal{H}_ m/\mathcal{I}^ n\mathcal{H}_ m$ we obtain a system of maps $\mathcal{H}_ n \to \mathcal{K}'_ m/\mathcal{I}^ n\mathcal{K}'_ m$ and hence a map $\mathcal{H}_ n \to \mathcal{K}_ n$ as desired.

To finish the proof of (1) we still have to show that $\mathop{\mathrm{Coim}}= \mathop{\mathrm{Im}}$ in $\textit{Coh}(X, \mathcal{I})$. We have seen above that taking kernels and cokernels commutes, over affines, with the description of $\textit{Coh}(X, \mathcal{I})$ as a category of modules. Since $\mathop{\mathrm{Im}}= \mathop{\mathrm{Coim}}$ holds in the category of modules this gives $\mathop{\mathrm{Coim}}= \mathop{\mathrm{Im}}$ in $\textit{Coh}(X, \mathcal{I})$. Parts (2) and (3) of the lemma are immediate from our construction of kernels and cokernels. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 087X. Beware of the difference between the letter 'O' and the digit '0'.