## Tag `08WV`

Chapter 34: Descent > Section 34.4: Descent for universally injective morphisms

Remark 34.4.13. Let $f: M \to N$ be a universally injective morphism in $\text{Mod}_R$. By choosing a splitting $g$ of $C(f)$, we may construct a functorial splitting of $C(1_P \otimes f)$ for each $P \in \text{Mod}_R$. Namely, by (34.4.11.1) this amounts to splitting $\mathop{\rm Hom}\nolimits_R(P, C(f))$ functorially in $P$, and this is achieved by the map $g \circ \bullet$.

The code snippet corresponding to this tag is a part of the file `descent.tex` and is located in lines 1023–1032 (see updates for more information).

```
\begin{remark}
\label{remark-functorial-splitting}
Let $f: M \to N$ be a universally injective morphism in $\text{Mod}_R$. By
choosing a splitting
$g$ of $C(f)$, we may construct a functorial splitting of $C(1_P \otimes f)$
for each $P \in \text{Mod}_R$.
Namely, by (\ref{equation-adjunction}) this amounts to splitting $\Hom_R(P,
C(f))$ functorially in $P$,
and this is achieved by the map $g \circ \bullet$.
\end{remark}
```

## Comments (0)

## Add a comment on tag `08WV`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 3 comments on Section 34.4: Descent.