The Stacks Project

Tag 08X5

Definition 34.4.19. Define the functor $f_*$ $: DD_{S/R} \to \text{Mod}_R$ by taking $f_*(M, \theta)$ to be the $R$-submodule of $M$ for which the diagram $$\tag{34.4.19.1} \xymatrix@C=8pc{f_*(M,\theta) \ar[r] & M \ar@<1ex>^{\theta \circ (1_M \otimes \delta_0^1)}[r] \ar@<-1ex>_{1_M \otimes \delta_1^1}[r] & M \otimes_{S, \delta_1^1} S_2 }$$ is an equalizer.

The code snippet corresponding to this tag is a part of the file descent.tex and is located in lines 1182–1194 (see updates for more information).

\begin{definition}
\label{definition-pushforward}
Define the functor {\it $f_*$} $: DD_{S/R} \to \text{Mod}_R$ by taking
$f_*(M, \theta)$ to be the $R$-submodule of $M$ for which the diagram

\label{equation-equalizer-f}
\xymatrix@C=8pc{f_*(M,\theta) \ar[r] & M \ar@<1ex>^{\theta \circ (1_M \otimes
\delta_0^1)}[r] \ar@<-1ex>_{1_M \otimes \delta_1^1}[r] &
M \otimes_{S, \delta_1^1} S_2
}

is an equalizer.
\end{definition}

There are no comments yet for this tag.

There are also 4 comments on Section 34.4: Descent.

Add a comment on tag 08X5

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).