The Stacks project

Lemma 48.17.8. In Situation 48.16.1 let $f : X \to Y$ be a morphism of $\textit{FTS}_ S$. Let $K$ be a dualizing complex on $Y$. Set $D_ Y(M) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(M, K)$ for $M \in D_{\textit{Coh}}(\mathcal{O}_ Y)$ and $D_ X(E) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(E, f^!K)$ for $E \in D_{\textit{Coh}}(\mathcal{O}_ X)$. Then there is a canonical isomorphism

\[ f^!M \longrightarrow D_ X(Lf^*D_ Y(M)) \]

for $M \in D_{\textit{Coh}}^+(\mathcal{O}_ Y)$.

Proof. Choose compactification $j : X \subset \overline{X}$ of $X$ over $Y$ (More on Flatness, Theorem 38.33.8 and Lemma 38.32.2). Let $a$ be the right adjoint of Lemma 48.3.1 for $\overline{X} \to Y$. Set $D_{\overline{X}}(E) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{\overline{X}}}(E, a(K))$ for $E \in D_{\textit{Coh}}(\mathcal{O}_{\overline{X}})$. Since formation of $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ commutes with restriction to opens and since $f^! = j^* \circ a$ we see that it suffices to prove that there is a canonical isomorphism

\[ a(M) \longrightarrow D_{\overline{X}}(L\overline{f}^*D_ Y(M)) \]

for $M \in D_{\textit{Coh}}(\mathcal{O}_ Y)$. For $F \in D_\mathit{QCoh}(\mathcal{O}_ X)$ we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{\overline{X}}( F, D_{\overline{X}}(L\overline{f}^*D_ Y(M))) & = \mathop{\mathrm{Hom}}\nolimits _{\overline{X}}( F \otimes _{\mathcal{O}_ X}^\mathbf {L} L\overline{f}^*D_ Y(M), a(K)) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y( R\overline{f}_*(F \otimes _{\mathcal{O}_ X}^\mathbf {L} L\overline{f}^*D_ Y(M)), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y( R\overline{f}_*(F) \otimes _{\mathcal{O}_ Y}^\mathbf {L} D_ Y(M), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y( R\overline{f}_*(F), D_ Y(D_ Y(M))) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(R\overline{f}_*(F), M) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\overline{X}}(F, a(M)) \end{align*}

The first equality by Cohomology, Lemma 20.42.2. The second by definition of $a$. The third by Derived Categories of Schemes, Lemma 36.22.1. The fourth equality by Cohomology, Lemma 20.42.2 and the definition of $D_ Y$. The fifth equality by Lemma 48.2.5. The final equality by definition of $a$. Hence we see that $a(M) = D_{\overline{X}}(L\overline{f}^*D_ Y(M))$ by Yoneda's lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AU2. Beware of the difference between the letter 'O' and the digit '0'.