The Stacks project

Lemma 75.7.4. Let $S$ be a scheme. Consider a cartesian diagram of algebraic spaces over $S$

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

with $f$ locally of finite type. If $T$ is a closed subset of $|X|$ proper over $Y$, then $|g'|^{-1}(T)$ is a closed subset of $|X'|$ proper over $Y'$.

Proof. Observe that the statement makes sense as $f'$ is locally of finite type by Morphisms of Spaces, Lemma 67.23.3. Let $Z \subset X$ be the reduced induced closed subspace structure on $T$. Denote $Z' = (g')^{-1}(Z)$ the scheme theoretic inverse image. Then $Z' = X' \times _ X Z = (Y' \times _ Y X) \times _ X Z = Y' \times _ Y Z$ is proper over $Y'$ as a base change of $Z$ over $Y$ (Morphisms of Spaces, Lemma 67.40.3). On the other hand, we have $T' = |Z'|$. Hence the lemma holds. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CZF. Beware of the difference between the letter 'O' and the digit '0'.