The Stacks project

Lemma 20.39.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $A \to \Gamma (X, \mathcal{O}_ X)$ be a ring map and let $f \in A$. Let $E$ be an object of $D(\mathcal{O}_ X)$. Denote

\[ E_ n = E \otimes _{\mathcal{O}_ X} (\mathcal{O}_ X \xrightarrow {f^ n} \mathcal{O}_ X) \]

and set $E^\wedge = R\mathop{\mathrm{lim}}\nolimits E_ n$. For $p \in \mathbf{Z}$ is a canonical commutative diagram

\[ \xymatrix{ & 0 & 0 \\ 0 \ar[r] & \widehat{H^ p(X, E)} \ar[r] \ar[u] & \mathop{\mathrm{lim}}\nolimits H^ p(X, E_ n) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, E)) \ar[r] & 0 \\ 0 \ar[r] & H^0(H^ p(X, E)^\wedge ) \ar[r] \ar[u] & H^ p(X, E^\wedge ) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, E)) \ar[r] \ar@{=}[u] & 0 \\ & R^1\mathop{\mathrm{lim}}\nolimits H^ p(X, E)[f^ n] \ar[u] \ar[r]^\cong & R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(X, E_ n) \ar[u] \\ & 0 \ar[u] & 0 \ar[u] } \]

with exact rows and columns where $\widehat{H^ p(X, E)} = \mathop{\mathrm{lim}}\nolimits H^ p(X, E)/f^ n H^ p(X, E)$ is the usual $f$-adic completion, $H^ p(X, E)^\wedge $ is the derived $f$-adic completion, and $T_ f(H^{p + 1}(X, E))$ is the $f$-adic Tate module, see More on Algebra, Example 15.93.5. Finally, we have $H^ p(X, E^\wedge ) = H^ p(R\Gamma (X, E)^\wedge )$.

Proof. Observe that $R\Gamma (X, E^\wedge ) = R\mathop{\mathrm{lim}}\nolimits R\Gamma (X, E_ n)$ by Lemma 20.37.2. On the other hand, we have

\[ R\Gamma (X, E_ n) = R\Gamma (X, E) \otimes _ A^\mathbf {L} (A \xrightarrow {f^ n} A) \]

(details omitted). We find that $R\Gamma (X, E^\wedge )$ is the derived $f$-adic completion $R\Gamma (X, E)^\wedge $. Whence the diagram by More on Algebra, Lemma 15.93.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H3C. Beware of the difference between the letter 'O' and the digit '0'.