The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Bibliography entry SGA2

author
Grothendieck, Alexander
title
Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$
year
1968
publisher
North-Holland Publishing Co.
series
Advanced Studies in Pure Mathematics
volume
2
pages
vii+287

@BOOK{SGA2,
    AUTHOR = "Grothendieck, Alexander",
    TITLE = "Cohomologie locale des faisceaux coh\'erents et th\'eor\`emes de {L}efschetz locaux et globaux {$(SGA$} {$2)$}",
    NOTE = "Augment\'e d'un expos\'e par Mich\`ele Raynaud, S\'eminaire de G\'eom\'etrie Alg\'ebrique du Bois-Marie, 1962",
    PUBLISHER = "North-{H}olland {P}ublishing {C}o.",
    YEAR = "1968",
    PAGES = "vii+287",
    SERIES = "Advanced Studies in Pure Mathematics",
    VOLUME = "2"
}

      

This item is referenced in 4 tags:

  • in Section 48.1: Introduction
  • in Section 49.1: Introduction
  • in Section 49.14: Application to connectedness, which cites Exposee XIII, Theorem 2.1 of SGA2
  • in Section 49.16: Algebraization of coherent formal modules, I