# The Stacks Project

## Tag 01ES

Lemma 20.12.5. Let $X$ be a ringed space. Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be a covering. For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with $$E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}))$$ converging to $H^{p + q}(U, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$.

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma 13.22.2) for the functors $$i : \textit{Mod}(\mathcal{O}_X) \to \textit{PMod}(\mathcal{O}_X) \quad\text{and}\quad \check{H}^0(\mathcal{U}, - ) : \textit{PMod}(\mathcal{O}_X) \to \text{Mod}_{\mathcal{O}_X(U)}.$$ Namely, we have $\check{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U)$ by Lemma 20.10.2. We have that $i(\mathcal{I})$ is Čech acyclic by Lemma 20.12.1. And we have that $\check{H}^p(\mathcal{U}, -) = R^p\check{H}^0(\mathcal{U}, -)$ as functors on $\textit{PMod}(\mathcal{O}_X)$ by Lemma 20.11.5. Putting everything together gives the lemma. $\square$

The code snippet corresponding to this tag is a part of the file cohomology.tex and is located in lines 1484–1495 (see updates for more information).

\begin{lemma}
\label{lemma-cech-spectral-sequence}
Let $X$ be a ringed space.
Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be a covering.
For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ there
is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}))$$
converging to $H^{p + q}(U, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$.
\end{lemma}

\begin{proof}
This is a Grothendieck spectral sequence
(see
Derived Categories, Lemma \ref{derived-lemma-grothendieck-spectral-sequence})
for the functors
$$i : \textit{Mod}(\mathcal{O}_X) \to \textit{PMod}(\mathcal{O}_X) \quad\text{and}\quad \check{H}^0(\mathcal{U}, - ) : \textit{PMod}(\mathcal{O}_X) \to \text{Mod}_{\mathcal{O}_X(U)}.$$
Namely, we have $\check{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U)$
by Lemma \ref{lemma-cech-h0}. We have that $i(\mathcal{I})$ is
{\v C}ech acyclic by Lemma \ref{lemma-injective-trivial-cech}. And we
have that $\check{H}^p(\mathcal{U}, -) = R^p\check{H}^0(\mathcal{U}, -)$
as functors on $\textit{PMod}(\mathcal{O}_X)$
by Lemma \ref{lemma-cech-cohomology-derived-presheaves}.
Putting everything together gives the lemma.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 01ES

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).