## Tag `01ES`

Chapter 20: Cohomology of Sheaves > Section 20.12: Čech cohomology and cohomology

Lemma 20.12.5. Let $X$ be a ringed space. Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be a covering. For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with $$ E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) $$ converging to $H^{p + q}(U, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$.

Proof.This is a Grothendieck spectral sequence (see Derived Categories, Lemma 13.22.2) for the functors $$ i : \textit{Mod}(\mathcal{O}_X) \to \textit{PMod}(\mathcal{O}_X) \quad\text{and}\quad \check{H}^0(\mathcal{U}, - ) : \textit{PMod}(\mathcal{O}_X) \to \text{Mod}_{\mathcal{O}_X(U)}. $$ Namely, we have $\check{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U)$ by Lemma 20.10.2. We have that $i(\mathcal{I})$ is Čech acyclic by Lemma 20.12.1. And we have that $\check{H}^p(\mathcal{U}, -) = R^p\check{H}^0(\mathcal{U}, -)$ as functors on $\textit{PMod}(\mathcal{O}_X)$ by Lemma 20.11.5. Putting everything together gives the lemma. $\square$

The code snippet corresponding to this tag is a part of the file `cohomology.tex` and is located in lines 1481–1492 (see updates for more information).

```
\begin{lemma}
\label{lemma-cech-spectral-sequence}
Let $X$ be a ringed space.
Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be a covering.
For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ there
is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(U, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
This is a Grothendieck spectral sequence
(see
Derived Categories, Lemma \ref{derived-lemma-grothendieck-spectral-sequence})
for the functors
$$
i : \textit{Mod}(\mathcal{O}_X) \to \textit{PMod}(\mathcal{O}_X)
\quad\text{and}\quad
\check{H}^0(\mathcal{U}, - ) : \textit{PMod}(\mathcal{O}_X)
\to \text{Mod}_{\mathcal{O}_X(U)}.
$$
Namely, we have $\check{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U)$
by Lemma \ref{lemma-cech-h0}. We have that $i(\mathcal{I})$ is
{\v C}ech acyclic by Lemma \ref{lemma-injective-trivial-cech}. And we
have that $\check{H}^p(\mathcal{U}, -) = R^p\check{H}^0(\mathcal{U}, -)$
as functors on $\textit{PMod}(\mathcal{O}_X)$
by Lemma \ref{lemma-cech-cohomology-derived-presheaves}.
Putting everything together gives the lemma.
\end{proof}
```

## Comments (0)

## Add a comment on tag `01ES`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.