# The Stacks Project

## Tag 02OI

### 30.2. Associated points

Let $R$ be a ring and let $M$ be an $R$-module. Recall that a prime $\mathfrak p \subset R$ is associated to $M$ if there exists an element of $M$ whose annihilator is $\mathfrak p$. See Algebra, Definition 10.62.1. Here is the definition of associated points for quasi-coherent sheaves on schemes as given in [EGA, IV Definition 3.1.1].

Definition 30.2.1. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.

1. We say $x \in X$ is associated to $\mathcal{F}$ if the maximal ideal $\mathfrak m_x$ is associated to the $\mathcal{O}_{X, x}$-module $\mathcal{F}_x$.
2. We denote $\text{Ass}(\mathcal{F})$ or $\text{Ass}_X(\mathcal{F})$ the set of associated points of $\mathcal{F}$.
3. The associated points of $X$ are the associated points of $\mathcal{O}_X$.

These definitions are most useful when $X$ is locally Noetherian and $\mathcal{F}$ of finite type. For example it may happen that a generic point of an irreducible component of $X$ is not associated to $X$, see Example 30.2.7. In the non-Noetherian case it may be more convenient to use weakly associated points, see Section 30.5. Let us link the scheme theoretic notion with the algebraic notion on affine opens; note that this correspondence works perfectly only for locally Noetherian schemes.

Lemma 30.2.2. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $\mathop{\rm Spec}(A) = U \subset X$ be an affine open, and set $M = \Gamma(U, \mathcal{F})$. Let $x \in U$, and let $\mathfrak p \subset A$ be the corresponding prime.

1. If $\mathfrak p$ is associated to $M$, then $x$ is associated to $\mathcal{F}$.
2. If $\mathfrak p$ is finitely generated, then the converse holds as well.

In particular, if $X$ is locally Noetherian, then the equivalence $$\mathfrak p \in \text{Ass}(M) \Leftrightarrow x \in \text{Ass}(\mathcal{F})$$ holds for all pairs $(\mathfrak p, x)$ as above.

Proof. This follows from Algebra, Lemma 10.62.15. But we can also argue directly as follows. Suppose $\mathfrak p$ is associated to $M$. Then there exists an $m \in M$ whose annihilator is $\mathfrak p$. Since localization is exact we see that $\mathfrak pA_{\mathfrak p}$ is the annihilator of $m/1 \in M_{\mathfrak p}$. Since $M_{\mathfrak p} = \mathcal{F}_x$ (Schemes, Lemma 25.5.4) we conclude that $x$ is associated to $\mathcal{F}$.

Conversely, assume that $x$ is associated to $\mathcal{F}$, and $\mathfrak p$ is finitely generated. As $x$ is associated to $\mathcal{F}$ there exists an element $m' \in M_{\mathfrak p}$ whose annihilator is $\mathfrak pA_{\mathfrak p}$. Write $m' = m/f$ for some $f \in A$, $f \not \in \mathfrak p$. The annihilator $I$ of $m$ is an ideal of $A$ such that $IA_{\mathfrak p} = \mathfrak pA_{\mathfrak p}$. Hence $I \subset \mathfrak p$, and $(\mathfrak p/I)_{\mathfrak p} = 0$. Since $\mathfrak p$ is finitely generated, there exists a $g \in A$, $g \not \in \mathfrak p$ such that $g(\mathfrak p/I) = 0$. Hence the annihilator of $gm$ is $\mathfrak p$ and we win.

If $X$ is locally Noetherian, then $A$ is Noetherian (Properties, Lemma 27.5.2) and $\mathfrak p$ is always finitely generated. $\square$

Lemma 30.2.3. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then $\text{Ass}(\mathcal{F}) \subset \text{Supp}(\mathcal{F})$.

Proof. This is immediate from the definitions. $\square$

Lemma 30.2.4. Let $X$ be a scheme. Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of quasi-coherent sheaves on $X$. Then $\text{Ass}(\mathcal{F}_2) \subset \text{Ass}(\mathcal{F}_1) \cup \text{Ass}(\mathcal{F}_3)$ and $\text{Ass}(\mathcal{F}_1) \subset \text{Ass}(\mathcal{F}_2)$.

Proof. For every point $x \in X$ the sequence of stalks $0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0$ is a short exact sequence of $\mathcal{O}_{X, x}$-modules. Hence the lemma follows from Algebra, Lemma 10.62.3. $\square$

Lemma 30.2.5. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then $\text{Ass}(\mathcal{F}) \cap U$ is finite for every quasi-compact open $U \subset X$.

Proof. This is true because the set of associated primes of a finite module over a Noetherian ring is finite, see Algebra, Lemma 10.62.5. To translate from schemes to algebra use that $U$ is a finite union of affine opens, each of these opens is the spectrum of a Noetherian ring (Properties, Lemma 27.5.2), $\mathcal{F}$ corresponds to a finite module over this ring (Cohomology of Schemes, Lemma 29.9.1), and finally use Lemma 30.2.2. $\square$

Lemma 30.2.6. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then $$\mathcal{F} = 0 \Leftrightarrow \text{Ass}(\mathcal{F}) = \emptyset.$$

Proof. If $\mathcal{F} = 0$, then $\text{Ass}(\mathcal{F}) = \emptyset$ by definition. Conversely, if $\text{Ass}(\mathcal{F}) = \emptyset$, then $\mathcal{F} = 0$ by Algebra, Lemma 10.62.7. To translate from schemes to algebra, restrict to any affine and use Lemma 30.2.2. $\square$

Example 30.2.7. Let $k$ be a field. The ring $R = k[x_1, x_2, x_3, \ldots]/(x_i^2)$ is local with locally nilpotent maximal ideal $\mathfrak m$. There exists no element of $R$ which has annihilator $\mathfrak m$. Hence $\text{Ass}(R) = \emptyset$, and $X = \mathop{\rm Spec}(R)$ is an example of a scheme which has no associated points.

Lemma 30.2.8. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. If $\text{Ass}(\mathcal{F}) \subset U \subset X$ is open, then $\Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F})$ is injective.

Proof. Let $s \in \Gamma(X, \mathcal{F})$ be a section which restricts to zero on $U$. Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map $\mathcal{O}_X \to \mathcal{F}$ defined by $s$. Then $\text{Supp}(\mathcal{F}') \cap U = \emptyset$. On the other hand, $\text{Ass}(\mathcal{F}') \subset \text{Ass}(\mathcal{F})$ by Lemma 30.2.4. Since also $\text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}')$ (Lemma 30.2.3) we conclude $\text{Ass}(\mathcal{F}') = \emptyset$. Hence $\mathcal{F}' = 0$ by Lemma 30.2.6. $\square$

Lemma 30.2.9. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support of $\mathcal{F}$ which is not a specialization of another point of $\text{Supp}(\mathcal{F})$. Then $x \in \text{Ass}(\mathcal{F})$. In particular, any generic point of an irreducible component of $X$ is an associated point of $X$.

Proof. Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_x$ is not zero. Hence $\text{Ass}(\mathcal{F}_x) \subset \mathop{\rm Spec}(\mathcal{O}_{X, x})$ is nonempty by Algebra, Lemma 10.62.7. On the other hand, by assumption $\text{Supp}(\mathcal{F}_x) = \{\mathfrak m_x\}$. Since $\text{Ass}(\mathcal{F}_x) \subset \text{Supp}(\mathcal{F}_x)$ (Algebra, Lemma 10.62.2) we see that $\mathfrak m_x$ is associated to $\mathcal{F}_x$ and we win. $\square$

The following lemma is the analogue of More on Algebra, Lemma 15.21.10.

Lemma 30.2.10. Let $X$ be a locally Noetherian scheme. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_X$-modules. Assume that for every $x \in X$ at least one of the following happens

1. $\mathcal{F}_x \to \mathcal{G}_x$ is injective, or
2. $x \not \in \text{Ass}(\mathcal{F})$.

Then $\varphi$ is injective.

Proof. The assumptions imply that $\text{Ass}(\mathop{\rm Ker}(\varphi)) = \emptyset$ and hence $\mathop{\rm Ker}(\varphi) = 0$ by Lemma 30.2.6. $\square$

Lemma 30.2.11. Let $X$ be a locally Noetherian scheme. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_X$-modules. Assume $\mathcal{F}$ is coherent and that for every $x \in X$ one of the following happens

1. $\mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism, or
2. $\text{depth}(\mathcal{F}_x) \geq 2$ and $x \not \in \text{Ass}(\mathcal{G})$.

Then $\varphi$ is an isomorphism.

Proof. This is a translation of More on Algebra, Lemma 15.21.11 into the language of schemes. $\square$

The code snippet corresponding to this tag is a part of the file divisors.tex and is located in lines 26–291 (see updates for more information).

\section{Associated points}
\label{section-associated}

\noindent
Let $R$ be a ring and let $M$ be an $R$-module.
Recall that a prime $\mathfrak p \subset R$ is {\it associated} to $M$
if there exists an element of $M$ whose annihilator is $\mathfrak p$.
See Algebra, Definition \ref{algebra-definition-associated}.
Here is the definition of associated points
for quasi-coherent sheaves on schemes
as given in \cite[IV Definition 3.1.1]{EGA}.

\begin{definition}
\label{definition-associated}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
\begin{enumerate}
\item We say $x \in X$ is {\it associated} to $\mathcal{F}$
if the maximal ideal
$\mathfrak m_x$ is associated to the $\mathcal{O}_{X, x}$-module
$\mathcal{F}_x$.
\item We denote $\text{Ass}(\mathcal{F})$ or $\text{Ass}_X(\mathcal{F})$
the set of associated points of $\mathcal{F}$.
\item The {\it associated points of $X$} are the associated
points of $\mathcal{O}_X$.
\end{enumerate}
\end{definition}

\noindent
These definitions are most useful when $X$ is locally Noetherian
and $\mathcal{F}$ of finite type.
For example it may happen that a generic point of an irreducible
component of $X$ is not associated to $X$, see
Example \ref{example-no-associated-prime}.
In the non-Noetherian case it may be more convenient to use weakly
associated points, see
Section \ref{section-weakly-associated}.
Let us link the scheme theoretic notion with the algebraic notion
on affine opens; note that this correspondence works perfectly only
for locally Noetherian schemes.

\begin{lemma}
\label{lemma-associated-affine-open}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $\Spec(A) = U \subset X$ be an affine open, and set
$M = \Gamma(U, \mathcal{F})$.
Let $x \in U$, and let $\mathfrak p \subset A$ be the corresponding prime.
\begin{enumerate}
\item If $\mathfrak p$ is associated to $M$, then $x$ is associated
to $\mathcal{F}$.
\item If $\mathfrak p$ is finitely generated, then the converse holds
as well.
\end{enumerate}
In particular, if $X$ is locally Noetherian, then the equivalence
$$\mathfrak p \in \text{Ass}(M) \Leftrightarrow x \in \text{Ass}(\mathcal{F})$$
holds for all pairs $(\mathfrak p, x)$ as above.
\end{lemma}

\begin{proof}
This follows from
Algebra, Lemma \ref{algebra-lemma-associated-primes-localize}.
But we can also argue directly as follows.
Suppose $\mathfrak p$ is associated to $M$.
Then there exists an $m \in M$ whose annihilator is $\mathfrak p$.
Since localization is exact we see that
$\mathfrak pA_{\mathfrak p}$ is the annihilator of
$m/1 \in M_{\mathfrak p}$. Since $M_{\mathfrak p} = \mathcal{F}_x$
(Schemes, Lemma \ref{schemes-lemma-spec-sheaves})
we conclude that $x$ is associated to $\mathcal{F}$.

\medskip\noindent
Conversely, assume that $x$ is associated to $\mathcal{F}$,
and $\mathfrak p$ is finitely generated.
As $x$ is associated to $\mathcal{F}$
there exists an element $m' \in M_{\mathfrak p}$ whose
annihilator is $\mathfrak pA_{\mathfrak p}$. Write
$m' = m/f$ for some $f \in A$, $f \not \in \mathfrak p$.
The annihilator $I$ of $m$ is an ideal of $A$ such that
$IA_{\mathfrak p} = \mathfrak pA_{\mathfrak p}$. Hence
$I \subset \mathfrak p$, and $(\mathfrak p/I)_{\mathfrak p} = 0$.
Since $\mathfrak p$ is finitely generated,
there exists a $g \in A$, $g \not \in \mathfrak p$ such that
$g(\mathfrak p/I) = 0$. Hence the annihilator of $gm$ is
$\mathfrak p$ and we win.

\medskip\noindent
If $X$ is locally Noetherian, then $A$ is Noetherian
(Properties, Lemma \ref{properties-lemma-locally-Noetherian})
and $\mathfrak p$ is always finitely generated.
\end{proof}

\begin{lemma}
\label{lemma-ass-support}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{Ass}(\mathcal{F}) \subset \text{Supp}(\mathcal{F})$.
\end{lemma}

\begin{proof}
This is immediate from the definitions.
\end{proof}

\begin{lemma}
\label{lemma-ses-ass}
Let $X$ be a scheme.
Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
be a short exact sequence of quasi-coherent sheaves on $X$.
Then
$\text{Ass}(\mathcal{F}_2) \subset \text{Ass}(\mathcal{F}_1) \cup \text{Ass}(\mathcal{F}_3)$
and
$\text{Ass}(\mathcal{F}_1) \subset \text{Ass}(\mathcal{F}_2)$.
\end{lemma}

\begin{proof}
For every point $x \in X$ the sequence of stalks
$0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0$
is a short exact sequence of $\mathcal{O}_{X, x}$-modules.
Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-ass}.
\end{proof}

\begin{lemma}
\label{lemma-finite-ass}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Then $\text{Ass}(\mathcal{F}) \cap U$ is finite for
every quasi-compact open $U \subset X$.
\end{lemma}

\begin{proof}
This is true because the set of associated primes of a finite module over
a Noetherian ring is finite, see
Algebra, Lemma \ref{algebra-lemma-finite-ass}.
To translate from schemes to algebra use that $U$ is a finite union of
affine opens, each of these opens is the spectrum of a Noetherian ring
(Properties, Lemma \ref{properties-lemma-locally-Noetherian}),
$\mathcal{F}$ corresponds to a finite module over this ring
(Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-Noetherian}),
and finally use
Lemma \ref{lemma-associated-affine-open}.
\end{proof}

\begin{lemma}
\label{lemma-ass-zero}
Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_X$-module. Then
$$\mathcal{F} = 0 \Leftrightarrow \text{Ass}(\mathcal{F}) = \emptyset.$$
\end{lemma}

\begin{proof}
If $\mathcal{F} = 0$, then $\text{Ass}(\mathcal{F}) = \emptyset$
by definition. Conversely, if $\text{Ass}(\mathcal{F}) = \emptyset$,
then $\mathcal{F} = 0$ by
Algebra, Lemma \ref{algebra-lemma-ass-zero}.
To translate from schemes to algebra, restrict to any affine and use
Lemma \ref{lemma-associated-affine-open}.
\end{proof}

\begin{example}
\label{example-no-associated-prime}
Let $k$ be a field. The ring $R = k[x_1, x_2, x_3, \ldots]/(x_i^2)$
is local with locally nilpotent maximal ideal $\mathfrak m$.
There exists no element of $R$ which has annihilator $\mathfrak m$.
Hence $\text{Ass}(R) = \emptyset$, and $X = \Spec(R)$
is an example of a scheme which has no associated points.
\end{example}

\begin{lemma}
\label{lemma-restriction-injective-open-contains-ass}
Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. If $\text{Ass}(\mathcal{F}) \subset U \subset X$
is open, then $\Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F})$
is injective.
\end{lemma}

\begin{proof}
Let $s \in \Gamma(X, \mathcal{F})$ be a section which restricts to zero on $U$.
Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map
$\mathcal{O}_X \to \mathcal{F}$ defined by $s$. Then
$\text{Supp}(\mathcal{F}') \cap U = \emptyset$. On the other hand,
$\text{Ass}(\mathcal{F}') \subset \text{Ass}(\mathcal{F})$
by Lemma \ref{lemma-ses-ass}. Since also
$\text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}')$
(Lemma \ref{lemma-ass-support}) we conclude
$\text{Ass}(\mathcal{F}') = \emptyset$.
Hence $\mathcal{F}' = 0$ by Lemma \ref{lemma-ass-zero}.
\end{proof}

\begin{lemma}
\label{lemma-minimal-support-in-ass}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support
of $\mathcal{F}$ which is not a specialization of another point of
$\text{Supp}(\mathcal{F})$. Then $x \in \text{Ass}(\mathcal{F})$.
In particular, any generic point of an irreducible component of $X$
is an associated point of $X$.
\end{lemma}

\begin{proof}
Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_x$
is not zero. Hence
$\text{Ass}(\mathcal{F}_x) \subset \Spec(\mathcal{O}_{X, x})$
is nonempty by
Algebra, Lemma \ref{algebra-lemma-ass-zero}.
On the other hand, by assumption
$\text{Supp}(\mathcal{F}_x) = \{\mathfrak m_x\}$.
Since
$\text{Ass}(\mathcal{F}_x) \subset \text{Supp}(\mathcal{F}_x)$
(Algebra, Lemma \ref{algebra-lemma-ass-support})
we see that $\mathfrak m_x$ is associated to $\mathcal{F}_x$
and we win.
\end{proof}

\noindent
The following lemma is the analogue of
More on Algebra, Lemma \ref{more-algebra-lemma-check-injective-on-ass}.

\begin{lemma}
\label{lemma-check-injective-on-ass}
Let $X$ be a locally Noetherian scheme. Let
$\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules.
Assume that for every $x \in X$
at least one of the following happens
\begin{enumerate}
\item $\mathcal{F}_x \to \mathcal{G}_x$ is injective, or
\item $x \not \in \text{Ass}(\mathcal{F})$.
\end{enumerate}
Then $\varphi$ is injective.
\end{lemma}

\begin{proof}
The assumptions imply that $\text{Ass}(\Ker(\varphi)) = \emptyset$
and hence $\Ker(\varphi) = 0$ by Lemma \ref{lemma-ass-zero}.
\end{proof}

\begin{lemma}
\label{lemma-check-isomorphism-via-depth-and-ass}
Let $X$ be a locally Noetherian scheme. Let
$\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules. Assume $\mathcal{F}$ is coherent
and that for every $x \in X$ one of the following happens
\begin{enumerate}
\item $\mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism, or
\item $\text{depth}(\mathcal{F}_x) \geq 2$ and
$x \not \in \text{Ass}(\mathcal{G})$.
\end{enumerate}
Then $\varphi$ is an isomorphism.
\end{lemma}

\begin{proof}
This is a translation of More on Algebra, Lemma
\ref{more-algebra-lemma-check-isomorphism-via-depth-and-ass}
into the language of schemes.
\end{proof}

Comment #2439 by David Hansen on February 26, 2017 a 12:23 am UTC

The proof of Lemma 30.2.10 should say "Ass" not "WeakAss".

Comment #2482 by Johan (site) on April 13, 2017 a 10:29 pm UTC

Thanks. Fixed here.

## Add a comment on tag 02OI

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).