The Stacks project

Lemma 65.16.1. Suppose given a big site $\mathit{Sch}_{fppf}$. Let $g : S \to S'$ be morphism of $\mathit{Sch}_{fppf}$. Let $j : (\mathit{Sch}/S)_{fppf} \to (\mathit{Sch}/S')_{fppf}$ be the corresponding localization functor. Let $F$ be a sheaf of sets on $(\mathit{Sch}/S)_{fppf}$. Then

  1. for a scheme $T'$ over $S'$ we have $j_!F(T'/S') = \coprod \nolimits _{\varphi : T' \to S} F(T' \xrightarrow {\varphi } S),$

  2. if $F$ is representable by a scheme $X \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$, then $j_!F$ is representable by $j(X)$ which is $X$ viewed as a scheme over $S'$, and

  3. if $F$ is an algebraic space over $S$, then $j_!F$ is an algebraic space over $S'$, and if $F = U/R$ is a presentation, then $j_!F = j(U)/j(R)$ is a presentation.

Let $F'$ be a sheaf of sets on $(\mathit{Sch}/S')_{fppf}$. Then

  1. for a scheme $T$ over $S$ we have $j^{-1}F'(T/S) = F'(T/S')$,

  2. if $F'$ is representable by a scheme $X' \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S')_{fppf})$, then $j^{-1}F'$ is representable, namely by $X'_ S = S \times _{S'} X'$, and

  3. if $F'$ is an algebraic space, then $j^{-1}F'$ is an algebraic space, and if $F' = U'/R'$ is a presentation, then $j^{-1}F' = U'_ S/R'_ S$ is a presentation.

Proof. The functors $j_!$, $j_*$ and $j^{-1}$ are defined in Sites, Lemma 7.25.8 where it is also shown that $j = j_{S/S'}$ is the localization of $(\mathit{Sch}/S')_{fppf}$ at the object $S/S'$. Hence all of the material on localization functors is available for $j$. The formula in (1) is Sites, Lemma 7.27.1. By definition $j_!$ is the left adjoint to restriction $j^{-1}$, hence $j_!$ is right exact. By Sites, Lemma 7.25.5 it also commutes with fibre products and equalizers. By Sites, Lemma 7.25.3 we see that $j_!h_ X = h_{j(X)}$ hence (2) holds. If $F$ is an algebraic space over $S$, then we can write $F = U/R$ (Lemma 65.9.1) and we get

\[ j_!F = j(U)/j(R) \]

because $j_!$ being right exact commutes with coequalizers, and moreover $j(R) = j(U) \times _{j_!F} j(U)$ as $j_!$ commutes with fibre products. Since the morphisms $j(s), j(t) : j(R) \to j(U)$ are simply the morphisms $s, t : R \to U$ (but viewed as morphisms of schemes over $S'$), they are still étale. Thus $(j(U), j(R), s, t)$ is an étale equivalence relation. Hence by Theorem 65.10.5 we conclude that $j_!F$ is an algebraic space.

Proof of (4), (5), and (6). The description of $j^{-1}$ is in Sites, Section 7.25. The restriction of the representable sheaf associated to $X'/S'$ is the representable sheaf associated to $X'_ S = S \times _{S'} Y'$ by Sites, Lemma 7.27.2. The restriction functor $j^{-1}$ is exact, hence $j^{-1}F' = U'_ S/R'_ S$. Again by exactness the sheaf $R'_ S$ is still an equivalence relation on $U'_ S$. Finally the two maps $R'_ S \to U'_ S$ are étale as base changes of the étale morphisms $R' \to U'$. Hence $j^{-1}F' = U'_ S/R'_ S$ is an algebraic space by Theorem 65.10.5 and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03I4. Beware of the difference between the letter 'O' and the digit '0'.