## Tag `07A7`

Chapter 21: Cohomology on Sites > Section 21.20: Cohomology of unbounded complexes

Remark 21.20.3. The construction of unbounded derived functor $Lf^*$ and $Rf_*$ allows one to construct the base change map in full generality. Namely, suppose that $$ \xymatrix{ (\mathop{\textit{Sh}}\nolimits(\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\textit{Sh}}\nolimits(\mathcal{C}), \mathcal{O}_\mathcal{C}) \ar[d]^f \\ (\mathop{\textit{Sh}}\nolimits(\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^g & (\mathop{\textit{Sh}}\nolimits(\mathcal{D}), \mathcal{O}_\mathcal{D}) } $$ is a commutative diagram of ringed topoi. Let $K$ be an object of $D(\mathcal{O}_\mathcal{C})$. Then there exists a canonical base change map $$ Lg^*Rf_*K \longrightarrow R(f')_*L(g')^*K $$ in $D(\mathcal{O}_{\mathcal{D}'})$. Namely, this map is adjoint to a map $L(f')^*Lg^*Rf_*K \to L(g')^*K$. Since $L(f')^* \circ Lg^* = L(g')^* \circ Lf^*$ we see this is the same as a map $L(g')^*Lf^*Rf_*K \to L(g')^*K$ which we can take to be $L(g')^*$ of the adjunction map $Lf^*Rf_*K \to K$.

The code snippet corresponding to this tag is a part of the file `sites-cohomology.tex` and is located in lines 3473–3500 (see updates for more information).

```
\begin{remark}
\label{remark-base-change}
The construction of unbounded derived functor $Lf^*$ and $Rf_*$
allows one to construct the base change map in full generality.
Namely, suppose that
$$
\xymatrix{
(\Sh(\mathcal{C}'), \mathcal{O}_{\mathcal{C}'})
\ar[r]_{g'} \ar[d]_{f'} &
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C}) \ar[d]^f \\
(\Sh(\mathcal{D}'), \mathcal{O}_{\mathcal{D}'})
\ar[r]^g &
(\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})
}
$$
is a commutative diagram of ringed topoi. Let $K$ be an object of
$D(\mathcal{O}_\mathcal{C})$.
Then there exists a canonical base change map
$$
Lg^*Rf_*K \longrightarrow R(f')_*L(g')^*K
$$
in $D(\mathcal{O}_{\mathcal{D}'})$. Namely, this map is adjoint to a map
$L(f')^*Lg^*Rf_*K \to L(g')^*K$.
Since $L(f')^* \circ Lg^* = L(g')^* \circ Lf^*$ we see this is the same
as a map $L(g')^*Lf^*Rf_*K \to L(g')^*K$
which we can take to be $L(g')^*$ of the adjunction map
$Lf^*Rf_*K \to K$.
\end{remark}
```

## Comments (0)

## Add a comment on tag `07A7`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.