The Stacks project

Lemma 76.20.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume $Y$ is locally Noetherian and $f$ locally of finite type. The following are equivalent:

  1. $f$ is smooth,

  2. for every solid commutative diagram

    \[ \xymatrix{ X \ar[d]_ f & \mathop{\mathrm{Spec}}(B) \ar[d]^ i \ar[l]^-\alpha \\ Y & \mathop{\mathrm{Spec}}(B') \ar[l]_-{\beta } \ar@{-->}[lu] } \]

    where $B' \to B$ is a small extension of Artinian local rings and $\beta $ of finite type (!) there exists a dotted arrow making the diagram commute.

Proof. If $f$ is smooth, then the infinitesimal lifting criterion (Lemma 76.19.6) says $f$ is formally smooth and (2) holds.

Assume $f$ is not smooth. The set of points $x \in X$ where $f$ is not smooth forms a closed subset $T$ of $|X|$. By Morphisms of Spaces, Lemma 67.25.6, there exists a point $x \in T \subset X$ with $x \in X_{\text{ft-pts}}$. Choose a commutative diagram

\[ \xymatrix{ X \ar[d] & U \ar[l] \ar[d] & u \ar@{|->}[d] \\ Y & V \ar[l] & v } \]

with $U$ and $V$ affine, horizontal arrows étale and such that there is a point $u \in U$ mapping to $x$. Then $u$ is a finite type point of $U$. Since $U \to V$ is not smooth at the point $u$, by More on Morphisms, Lemma 37.12.1 there is a diagram

\[ \xymatrix{ X \ar[d] & U \ar[l] \ar[d] & \mathop{\mathrm{Spec}}(B) \ar[d]^ i \ar[l]^-\alpha \\ Y & V \ar[l] & \mathop{\mathrm{Spec}}(B') \ar[l]_-{\beta } \ar@{-->}[lu] } \]

with $B' \to B$ a small extension of (Artinian) local rings such that the residue field of $B$ is equal to $\kappa (v)$ and such that the dotted arrow does not exist. Since $U \to V$ is of finite type, we see that $v$ is a finite type point of $V$. By Morphisms, Lemma 29.16.2 the morphism $\beta $ is of finite type, hence the composition $\mathop{\mathrm{Spec}}(B) \to Y$ is of finite type also. Arguing exactly as in the proof of Lemma 76.20.1 (using that $U \to X$ and $V \to Y$ are étale hence formally étale) we see that there cannot be an arrow $\mathop{\mathrm{Spec}}(B) \to X$ fitting into the outer rectangle of the last displayed diagram. In other words, (2) doesn't hold and the proof is complete. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0APP. Beware of the difference between the letter 'O' and the digit '0'.