Lemma 48.15.5. Let Y be a ringed space. Let \mathcal{I} \subset \mathcal{O}_ Y be a sheaf of ideals. Set \mathcal{O}_ X = \mathcal{O}_ Y/\mathcal{I} and \mathcal{N} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_ X). If \mathcal{I} is Koszul-regular (Divisors, Definition 31.20.2) then
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) = \wedge ^ r \mathcal{N}[-r]
where r : Y \to \{ 1, 2, 3, \ldots \} sends y to the minimal number of generators of \mathcal{I} needed in a neighbourhood of y.
Proof.
We can use Lemmas 48.15.3 and 48.15.4 to see that we have isomorphisms \wedge ^ i\mathcal{N} \to \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) for i \geq 0. Thus it suffices to show that the map \mathcal{O}_ Y \to \mathcal{O}_ X induces an isomorphism
\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ r_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) \longrightarrow \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ r_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)
and that \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) is zero for i \not= r. These statements are local on Y. Thus we may assume that we have global sections f_1, \ldots , f_ r of \mathcal{O}_ Y which generate \mathcal{I} and which form a Koszul regular sequence. Let \mathcal{A}^\bullet be the Koszul complex on f_1, \ldots , f_ r as introduced in the proof of Lemma 48.15.4. Then
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y)
by Cohomology, Lemma 20.46.9. Denote 1 : \mathcal{A}^\bullet \to \mathcal{O}_ Y the map of differential graded \mathcal{O}_ Y-algebras given by the identity map of \mathcal{A}^0 = \mathcal{O}_ Y \to \mathcal{O}_ Y in degree 0. With \delta _ j as in the proof of Lemma 48.15.4 we get an isomorphism of graded \mathcal{O}_ Y-modules
\mathcal{O}_ Y\langle \delta _1, \ldots , \delta _ r\rangle \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y)
by mapping \delta _{j_1} \ldots \delta _{j_ i} to 1 \circ \delta _{j_1} \circ \ldots \circ \delta _{j_ i} in degree i. Via this isomorphism the differential on the right hand side induces a differential \text{d} on the left hand side. By our sign rules we have \text{d}(1) = - \sum f_ j \delta _ j. Since \delta _ j : \mathcal{A}^\bullet \to \mathcal{A}^\bullet [1] is a morphism of complexes, it follows that
\text{d}(\delta _{j_1} \ldots \delta _{j_ i}) = (- \sum f_ j \delta _ j )\delta _{j_1} \ldots \delta _{j_ i}
Observe that we have \text{d} = \sum f_ j \delta _ j on the differential graded algebra \mathcal{A}. Therefore the map defined by the rule
1 \circ \delta _{j_1} \ldots \delta _{j_ i} \longmapsto (\delta _{j_1} \circ \ldots \circ \delta _{j_ i})(\xi _1 \ldots \xi _ r)
will define an isomorphism of complexes
\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \longrightarrow \mathcal{A}^\bullet [-r]
if r is odd and commuting with differentials up to sign if r is even. In any case these complexes have isomorphic cohomology, which shows the desired vanishing. The isomorphism on cohomology in degree r under the map
\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ X)
also follows in a straightforward manner from this. (We observe that our choice of conventions regarding Koszul complexes does intervene in the definition of the isomorphism R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{O}_ X, \mathcal{O}_ Y) = \wedge ^ r \mathcal{N}[-r].)
\square
Comments (3)
Comment #8644 by nkym on
Comment #8645 by nkym on
Comment #9407 by Stacks project on