The Stacks project

Lemma 85.35.1. Let $X$ be an algebraic space over a scheme $S$. Let $K, E \in D_\mathit{QCoh}(\mathcal{O}_ X)$. Let $a : U \to X$ be an fppf hypercovering. Assume that for all $n \geq 0$ we have

\[ \mathop{\mathrm{Ext}}\nolimits _{\mathcal{O}_{U_ n}}^ i(La_ n^*K, La_ n^*E) = 0 \text{ for } i < 0 \]

Then we have

  1. $\mathop{\mathrm{Ext}}\nolimits _{\mathcal{O}_ X}^ i(K, E) = 0$ for $i < 0$, and

  2. there is an exact sequence

    \[ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(K, E) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{U_0}}(La_0^*K, La_0^*E) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{U_1}}(La_1^*K, La_1^*E) \]

Proof. Write $K_ n = La_ n^*K$ and $E_ n = La_ n^*E$. Then these are the simplicial systems of the derived category of modules (Definition 85.14.1) associated to $La^*K$ and $La^*E$ (Lemma 85.14.2) where $a : U_{\acute{e}tale}\to X_{\acute{e}tale}$ is as in Section 85.32. Let us prove (2) first. By Lemma 85.34.4 we have

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(K, E) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(La^*K, La^*E) \]

Thus the sequence looks like this:

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(La^*K, La^*E) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{U_0}}(K_0, E_0) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{U_1}}(K_1, E_1) \]

The first arrow is injective by Lemma 85.14.5. The image of this arrow is the kernel of the second by Lemma 85.14.6. This finishes the proof of (2). Part (1) follows by applying part (2) with $K[i]$ and $E$ for $i > 0$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DL9. Beware of the difference between the letter 'O' and the digit '0'.