Lemma 3.9.4. Let $S$ be an affine scheme. Let $R = \Gamma (S, \mathcal{O}_ S)$. Then the size of $S$ is equal to $\max \{ \aleph _0, |R|\} $.
Proof. There are at most $\max \{ |R|, \aleph _0\} $ affine opens of $\mathop{\mathrm{Spec}}(R)$. This is clear since any affine open $U \subset \mathop{\mathrm{Spec}}(R)$ is a finite union of principal opens $D(f_1) \cup \ldots \cup D(f_ n)$ and hence the number of affine opens is at most $\sup _ n |R|^ n = \max \{ |R|, \aleph _0\} $, see [Ch. I, 10.13, Kunen]. On the other hand, we see that $\Gamma (U, \mathcal{O}) \subset R_{f_1} \times \ldots \times R_{f_ n}$ and hence $|\Gamma (U, \mathcal{O})| \leq \max \{ \aleph _0, |R_{f_1}|, \ldots , |R_{f_ n}|\} $. Thus it suffices to prove that $|R_ f| \leq \max \{ \aleph _0, |R|\} $ which is omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: