The Stacks project

Definition 5.15.1. Let $X$ be a topological space. Let $E \subset X$ be a subset of $X$.

  1. We say $E$ is constructible1 in $X$ if $E$ is a finite union of subsets of the form $U \cap V^ c$ where $U, V \subset X$ are open and retrocompact in $X$.

  2. We say $E$ is locally constructible in $X$ if there exists an open covering $X = \bigcup V_ i$ such that each $E \cap V_ i$ is constructible in $V_ i$.

[1] In the second edition of EGA I [EGA1-second] this was called a “globally constructible” set and a the terminology “constructible” was used for what we call a locally constructible set.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 005G. Beware of the difference between the letter 'O' and the digit '0'.