Processing math: 100%

The Stacks project

Definition 6.5.1. Let X be a topological space. Let \mathcal{C} be a category.

  1. A presheaf \mathcal{F} on X with values in \mathcal{C} is given by a rule which assigns to every open U \subset X an object \mathcal{F}(U) of \mathcal{C} and to each inclusion V \subset U a morphism \rho _ V^ U : \mathcal{F}(U) \to \mathcal{F}(V) in \mathcal{C} such that whenever W \subset V \subset U we have \rho _ W^ U = \rho _ W^ V \circ \rho _ V^ U.

  2. A morphism \varphi : \mathcal{F} \to \mathcal{G} of presheaves with value in \mathcal{C} is given by a morphism \varphi : \mathcal{F}(U) \to \mathcal{G}(U) in \mathcal{C} compatible with restriction morphisms.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.