Lemma 6.6.2. With X, \mathcal{O}_1, \mathcal{O}_2, \mathcal{F} and \mathcal{G} as above there exists a canonical bijection
\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}, \mathcal{F} )
In other words, the restriction and change of rings functors are adjoint to each other.
Comments (0)
There are also: