Definition 6.10.1. Let $X$ be a topological space. Let $\mathcal{O}$ be a sheaf of rings on $X$.

A

*sheaf of $\mathcal{O}$-modules*is a presheaf of $\mathcal{O}$-modules $\mathcal{F}$, see Definition 6.6.1, such that the underlying presheaf of abelian groups $\mathcal{F}$ is a sheaf.A

*morphism of sheaves of $\mathcal{O}$-modules*is a morphism of presheaves of $\mathcal{O}$-modules.Given sheaves of $\mathcal{O}$-modules $\mathcal{F}$ and $\mathcal{G}$ we denote $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ the set of morphism of sheaves of $\mathcal{O}$-modules.

The category of sheaves of $\mathcal{O}$-modules is denoted $\textit{Mod}(\mathcal{O})$.

## Comments (0)