Lemma 6.14.2. Let $X$ be a topological space. Let $\mathcal{O} \to \mathcal{O}'$ be a morphism of presheaves of rings on $X$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}$-modules. Let $x \in X$. We have
\[ \mathcal{F}_ x \otimes _{\mathcal{O}_ x} \mathcal{O}'_ x = (\mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{O}')_ x \]
as $\mathcal{O}'_ x$-modules.
Comments (0)