Lemma 6.24.6. Let $f : X \to Y$ be a continuous map of topological spaces. Let $\mathcal{O}$ be a sheaf of rings on $Y$. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}$-modules. There is a natural map of underlying presheaves of sets
which turns $f^{-1}\mathcal{G}$ into a sheaf of $f^{-1}\mathcal{O}$-modules.
Comments (0)
There are also: