Lemma 6.26.3. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of ringed spaces. The functors $(g \circ f)_*$ and $g_* \circ f_*$ are equal. There is a canonical isomorphism of functors $(g \circ f)^* \cong f^* \circ g^*$.
Proof. The result on pushforwards is a consequence of Lemma 6.21.2 and our definitions. The result on pullbacks follows from this by the same argument as in the proof of Lemma 6.21.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: