Definition 6.30.8. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology on $X$. Let $(\mathcal{C}, F)$ be a type of algebraic structure.

A

*presheaf $\mathcal{F}$ with values in $\mathcal{C}$ on $\mathcal{B}$*is a rule which assigns to each $U \in \mathcal{B}$ an object $\mathcal{F}(U)$ of $\mathcal{C}$ and to each inclusion $V \subset U$ of elements of $\mathcal{B}$ a morphism $\rho ^ U_ V : \mathcal{F}(U) \to \mathcal{F}(V)$ in $\mathcal{C}$ such that $\rho ^ U_ U = \text{id}_{\mathcal{F}(U)}$ for all $U \in \mathcal{B}$ and whenever $W \subset V \subset U$ in $\mathcal{B}$ we have $\rho ^ U_ W = \rho ^ V_ W \circ \rho ^ U_ V$.A

*morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of presheaves with values in $\mathcal{C}$ on $\mathcal{B}$*is a rule which assigns to each element $U \in \mathcal{B}$ a morphism of algebraic structures $\varphi : \mathcal{F}(U) \to \mathcal{G}(U)$ compatible with restriction maps.Given a presheaf $\mathcal{F}$ with values in $\mathcal{C}$ on $\mathcal{B}$ we say that $U \mapsto F(\mathcal{F}(U))$ is the underlying presheaf of sets.

A

*sheaf $\mathcal{F}$ with values in $\mathcal{C}$ on $\mathcal{B}$*is a presheaf with values in $\mathcal{C}$ on $\mathcal{B}$ whose underlying presheaf of sets is a sheaf.

## Comments (2)

Comment #3266 by Kevin Buzzard on

Comment #3361 by Johan on

There are also: