The Stacks project

Definition 6.30.11. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology on $X$. Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{B}$.

  1. A presheaf of $\mathcal{O}$-modules $\mathcal{F}$ on $\mathcal{B}$ is a presheaf of abelian groups on $\mathcal{B}$ together with a morphism of presheaves of sets $\mathcal{O} \times \mathcal{F} \to \mathcal{F}$ such that for all $U \in \mathcal{B}$ the map $\mathcal{O}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ turns the group $\mathcal{F}(U)$ into an $\mathcal{O}(U)$-module.

  2. A morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of presheaves of $\mathcal{O}$-modules on $\mathcal{B}$ is a morphism of abelian presheaves on $\mathcal{B}$ which induces an $\mathcal{O}(U)$-module homomorphism $\mathcal{F}(U) \to \mathcal{G}(U)$ for every $U \in \mathcal{B}$.

  3. Suppose that $\mathcal{O}$ is a sheaf of rings on $\mathcal{B}$. A sheaf $\mathcal{F}$ of $\mathcal{O}$-modules on $\mathcal{B}$ is a presheaf of $\mathcal{O}$-modules on $\mathcal{B}$ whose underlying presheaf of abelian groups is a sheaf.

Comments (0)

There are also:

  • 6 comment(s) on Section 6.30: Bases and sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 009S. Beware of the difference between the letter 'O' and the digit '0'.