The Stacks project

Lemma 6.30.14. Let $f : X \to Y$ be a continuous map of topological spaces. Let $(\mathcal{C}, F)$ be a type of algebraic structures. Let $\mathcal{F}$ be a sheaf with values in $\mathcal{C}$ on $X$. Let $\mathcal{G}$ be a sheaf with values in $\mathcal{C}$ on $Y$. Let $\mathcal{B}$ be a basis for the topology on $Y$. Suppose given for every $V \in \mathcal{B}$ a morphism

\[ \varphi _ V : \mathcal{G}(V) \longrightarrow \mathcal{F}(f^{-1}V) \]

of $\mathcal{C}$ compatible with restriction mappings. Then there is a unique $f$-map (see Definition 6.21.7 and discussion of $f$-maps in Section 6.23) $\varphi : \mathcal{G} \to \mathcal{F}$ recovering $\varphi _ V$ for $V \in \mathcal{B}$.

Proof. This is trivial because the collection of maps amounts to a morphism between the restrictions of $\mathcal{G}$ and $f_*\mathcal{F}$ to $\mathcal{B}$. By Lemma 6.30.10 this is the same as giving a morphism from $\mathcal{G}$ to $f_*\mathcal{F}$, which by Lemma 6.21.8 is the same as an $f$-map. See also Lemma 6.23.1 and the discussion preceding it for how to deal with the case of sheaves of algebraic structures. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 6.30: Bases and sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 009V. Beware of the difference between the letter 'O' and the digit '0'.