Lemma 6.30.17. Let (f, f^\sharp ) : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. Let \mathcal{F} be a sheaf of \mathcal{O}_ X-modules. Let \mathcal{G} be a sheaf of \mathcal{O}_ Y-modules. Let \mathcal{B}_ Y be a basis for the topology on Y. Let \mathcal{B}_ X be a basis for the topology on X. Suppose given for every V \in \mathcal{B}_ Y, and U \in \mathcal{B}_ X such that f(U) \subset V a \mathcal{O}_ Y(V)-module map
compatible with restriction mappings. Here the \mathcal{O}_ Y(V)-module structure on \mathcal{F}(U) comes from the \mathcal{O}_ X(U)-module structure via the map f^\sharp _ V : \mathcal{O}_ Y(V) \to \mathcal{O}_ X(f^{-1}V) \to \mathcal{O}_ X(U). Then there is a unique f-map of sheaves of modules (see Definition 6.21.7 and the discussion of f-maps in Section 6.26) \varphi : \mathcal{G} \to \mathcal{F} recovering \varphi _ V^ U as the composition
for every pair (U, V) as above.
Comments (2)
Comment #4912 by Tim Holzschuh on
Comment #5182 by Johan on
There are also: