Loading web-font TeX/Math/Italic

The Stacks project

Lemma 6.31.9. Let X be a topological space. Let j : U \to X be the inclusion of an open subset. The functor

j_! : \mathop{\mathit{Sh}}\nolimits (U) \longrightarrow \mathop{\mathit{Sh}}\nolimits (X)

is fully faithful. Its essential image consists exactly of those sheaves \mathcal{G} such that \mathcal{G}_ x = \emptyset for all x \in X \setminus U.

Proof. Fully faithfulness follows formally from j^{-1} j_! = \text{id}. We have seen that any sheaf in the image of the functor has the property on the stalks mentioned in the lemma. Conversely, suppose that \mathcal{G} has the indicated property. Then it is easy to check that

j_! j^{-1} \mathcal{G} \to \mathcal{G}

is an isomorphism on all stalks and hence an isomorphism. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 6.31: Open immersions and (pre)sheaves

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.