Definition 25.2.1. Let \mathcal{C} be a category. We denote \text{SR}(\mathcal{C}) the category of semi-representable objects defined as follows
objects are families of objects \{ U_ i\} _{i \in I}, and
morphisms \{ U_ i\} _{i \in I} \to \{ V_ j\} _{j \in J} are given by a map \alpha : I \to J and for each i \in I a morphism f_ i : U_ i \to V_{\alpha (i)} of \mathcal{C}.
Let X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) be an object of \mathcal{C}. The category of semi-representable objects over X is the category \text{SR}(\mathcal{C}, X) = \text{SR}(\mathcal{C}/X).
Comments (0)