Lemma 27.8.7. Let $S$ be a graded ring. The locally ringed space $\text{Proj}(S)$ is a scheme. The standard opens $D_{+}(f)$ are affine opens. For any graded $S$-module $M$ the sheaf $\widetilde M$ is a quasi-coherent sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules.
Proof. Consider a standard open $D_{+}(f) \subset \text{Proj}(S)$. By Lemmas 27.8.1 and 27.8.4 we have $\Gamma (D_{+}(f), \mathcal{O}_{\text{Proj}(S)}) = S_{(f)}$, and we have a homeomorphism $\varphi : D_{+}(f) \to \mathop{\mathrm{Spec}}(S_{(f)})$. For any standard open $D(g) \subset \mathop{\mathrm{Spec}}(S_{(f)})$ we may pick an $h \in S_{+}$ as in Lemma 27.8.6. Then $\varphi ^{-1}(D(g)) = D_{+}(h)$, and by Lemmas 27.8.4 and 27.8.1 we see
Thus the restriction of $\mathcal{O}_{\text{Proj}(S)}$ to $D_{+}(f)$ corresponds via the homeomorphism $\varphi $ exactly to the sheaf $\mathcal{O}_{\mathop{\mathrm{Spec}}(S_{(f)})}$ as defined in Schemes, Section 26.5. We conclude that $D_{+}(f)$ is an affine scheme isomorphic to $\mathop{\mathrm{Spec}}(S_{(f)})$ via $\varphi $ and hence that $\text{Proj}(S)$ is a scheme.
In exactly the same way we show that $\widetilde M$ is a quasi-coherent sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules. Namely, the argument above will show that
which shows that $\widetilde M$ is quasi-coherent. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: