Lemma 27.11.6. With hypotheses and notation as in Lemma 27.11.1 above. Assume there exists a ring map $R \to A_0$ and a ring map $R \to R'$ such that $B = R' \otimes _ R A$. Then

$U(\psi ) = Y$,

the diagram

\[ \xymatrix{ Y = \text{Proj}(B) \ar[r]_{r_\psi } \ar[d] & \text{Proj}(A) = X \ar[d] \\ \mathop{\mathrm{Spec}}(R') \ar[r] & \mathop{\mathrm{Spec}}(R) } \]is a fibre product square, and

the maps $\theta : r_\psi ^*\mathcal{O}_ X(n) \to \mathcal{O}_ Y(n)$ are isomorphisms.

## Comments (0)

There are also: