Example 39.5.5. The determinant defines a morphism of group schemes
\[ \det : \text{GL}_ n \longrightarrow \mathbf{G}_ m \]
over $\mathbf{Z}$. By base change it gives a morphism of group schemes $\text{GL}_{n, S} \to \mathbf{G}_{m, S}$ over any base scheme $S$.
Comments (0)