Lemma 39.16.1. Let S be a scheme. Let Y be a scheme over S. Let (G, m) be a group scheme over Y with identity e_ G and inverse i_ G. Let X/Y be a scheme over Y and let a : G \times _ Y X \to X be an action of G on X/Y. Then we get a groupoid scheme (U, R, s, t, c, e, i) over S in the following manner:
We set U = X, and R = G \times _ Y X.
We set s : R \to U equal to (g, x) \mapsto x.
We set t : R \to U equal to (g, x) \mapsto a(g, x).
We set c : R \times _{s, U, t} R \to R equal to ((g, x), (g', x')) \mapsto (m(g, g'), x').
We set e : U \to R equal to x \mapsto (e_ G(x), x).
We set i : R \to R equal to (g, x) \mapsto (i_ G(g), a(g, x)).
Comments (0)