Remarks 8.3.2. Two remarks on Definition 8.3.1 are in order. Let p : \mathcal{S} \to \mathcal{C} be a fibred category. Let \{ f_ i : U_ i \to U\} _{i \in I}, and (X_ i, \varphi _{ij}) be as in Definition 8.3.1.
There is a diagonal morphism \Delta : U_ i \to U_ i \times _ U U_ i. We can pull back \varphi _{ii} via this morphism to get an automorphism \Delta ^\ast \varphi _{ii} \in \text{Aut}_{U_ i}(X_ i). On pulling back the cocycle condition for the triple (i, i, i) by \Delta _{123} : U_ i \to U_ i \times _ U U_ i \times _ U U_ i we deduce that \Delta ^\ast \varphi _{ii} \circ \Delta ^\ast \varphi _{ii} = \Delta ^\ast \varphi _{ii}; thus \Delta ^\ast \varphi _{ii} = \text{id}_{X_ i}.
There is a morphism \Delta _{13}: U_ i \times _ U U_ j \to U_ i \times _ U U_ j \times _ U U_ i and we can pull back the cocycle condition for the triple (i, j, i) to get the identity (\sigma ^\ast \varphi _{ji}) \circ \varphi _{ij} = \text{id}_{\text{pr}_0^\ast X_ i}, where \sigma : U_ i \times _ U U_ j \to U_ j \times _ U U_ i is the switching morphism.
Comments (0)
There are also: