Definition 111.6.9. A topological space $X$ is called *irreducible* if $X$ is not empty and if $X = Z_1\cup Z_2$ with $Z_1, Z_2\subset X$ closed, then either $Z_1 = X$ or $Z_2 = X$. A subset $T\subset X$ of a topological space is called *irreducible* if it is an irreducible topological space with the topology induced from $X$. This definition implies $T$ is irreducible if and only if the closure $\bar T$ of $T$ in $X$ is irreducible.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)