Definition 111.6.26. A topological space $X$ is called connected if it is nonempty and not the union of two nonempty disjoint open subsets. A connected component of $X$ is a maximal connected subset. Any point of $X$ is contained in a connected component of $X$ and any connected component of $X$ is closed in $X$. (But in general a connected component need not be open in $X$.)
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)