Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Definition 111.24.1. Let $\phi : A \to B$ be a homomorphism of rings. We say that the going-up theorem holds for $\phi $ if the following condition is satisfied:

  • for any ${\mathfrak p}, {\mathfrak p}' \in \mathop{\mathrm{Spec}}(A)$ such that ${\mathfrak p} \subset {\mathfrak p}'$, and for any $P \in \mathop{\mathrm{Spec}}(B)$ lying over ${\mathfrak p}$, there exists $P'\in \mathop{\mathrm{Spec}}(B)$ lying over ${\mathfrak p}'$ such that $P \subset P'$.

Similarly, we say that the going-down theorem holds for $\phi $ if the following condition is satisfied:

  • for any ${\mathfrak p}, {\mathfrak p}' \in \mathop{\mathrm{Spec}}(A)$ such that ${\mathfrak p} \subset {\mathfrak p}'$, and for any $P' \in \mathop{\mathrm{Spec}}(B)$ lying over ${\mathfrak p}'$, there exists $P\in \mathop{\mathrm{Spec}}(B)$ lying over ${\mathfrak p}$ such that $P \subset P'$.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.