Exercise 110.33.1. Find a $1$-point locally ringed space which is not a scheme.

## 110.33 Schemes

Let $LRS$ be the category of locally ringed spaces. An affine scheme is an object in $LRS$ isomorphic in $LRS$ to a pair of the form $(\mathop{\mathrm{Spec}}(A), {\mathcal O}_{\mathop{\mathrm{Spec}}(A)})$. A scheme is an object $(X, {\mathcal O}_ X)$ of $LRS$ such that every point $x\in X$ has an open neighbourhood $U \subset X$ such that the pair $(U, {\mathcal O}_ X|_ U)$ is an affine scheme.

Exercise 110.33.2. Suppose that $X$ is a scheme whose underlying topological space has 2 points. Show that $X$ is an affine scheme.

Exercise 110.33.3. Suppose that $X$ is a scheme whose underlying topological space is a finite discrete set. Show that $X$ is an affine scheme.

Exercise 110.33.4. Show that there exists a non-affine scheme having three points.

Exercise 110.33.5. Suppose that $X$ is a nonempty quasi-compact scheme. Show that $X$ has a closed point.

Remark 110.33.6. When $(X, {\mathcal O}_ X)$ is a ringed space and $U \subset X$ is an open subset then $(U, {\mathcal O}_ X|_ U)$ is a ringed space. Notation: ${\mathcal O}_ U = {\mathcal O}_ X|_ U$. There is a canonical morphisms of ringed spaces

If $(X, {\mathcal O}_ X)$ is a locally ringed space, so is $(U, {\mathcal O}_ U)$ and $j$ is a morphism of locally ringed spaces. If $(X, {\mathcal O}_ X)$ is a scheme so is $(U, {\mathcal O}_ U)$ and $j$ is a morphism of schemes. We say that $(U, {\mathcal O}_ U)$ is an *open subscheme* of $(X, {\mathcal O}_ X)$ and that $j$ is an *open immersion*. More generally, any morphism $j' : (V, {\mathcal O}_ V) \to (X, {\mathcal O}_ X)$ that is *isomorphic* to a morphism $j : (U, {\mathcal O}_ U) \to (X, {\mathcal O}_ X)$ as above is called an open immersion.

Exercise 110.33.7. Give an example of an affine scheme $(X, {\mathcal O}_ X)$ and an open $U \subset X$ such that $(U, {\mathcal O}_ X|U)$ is not an affine scheme.

Exercise 110.33.8. Given an example of a pair of affine schemes $(X, {\mathcal O}_ X)$, $(Y, {\mathcal O}_ Y)$, an open subscheme $(U, {\mathcal O}_ X|_ U)$ of $X$ and a morphism of schemes $(U, {\mathcal O}_ X|_ U) \to (Y, {\mathcal O}_ Y)$ that does not extend to a morphism of schemes $(X, {\mathcal O}_ X) \to (Y, {\mathcal O}_ Y)$.

Exercise 110.33.9. (This is pretty hard.) Given an example of a scheme $X$, and open subscheme $U \subset X$ and a closed subscheme $Z \subset U$ such that $Z$ does not extend to a closed subscheme of $X$.

Exercise 110.33.10. Give an example of a scheme $X$, a field $K$, and a morphism of ringed spaces $\mathop{\mathrm{Spec}}(K) \to X$ which is NOT a morphism of schemes.

Exercise 110.33.11. Do all the exercises in [Chapter II, H], Sections 1 and 2... Just kidding!

Definition 110.33.12. A scheme $X$ is called *integral* if $X$ is nonempty and for every nonempty affine open $U \subset X$ the ring $\Gamma (U, \mathcal{O}_ X) = \mathcal{O}_ X(U)$ is a domain.

Exercise 110.33.13. Give an example of a morphism of *integral* schemes $f : X \to Y$ such that the induced maps ${\mathcal O}_{Y, f(x)} \to {\mathcal O}_{X, x}$ are surjective for all $x\in X$, but $f$ is not a closed immersion.

Exercise 110.33.14. Give an example of a fibre product $X \times _ S Y$ such that $X$ and $Y$ are affine but $X \times _ S Y$ is not.

Remark 110.33.15. It turns out this cannot happen with $S$ separated. Do you know why?

Exercise 110.33.16. Give an example of a scheme $V$ which is integral 1-dimensional scheme of finite type over ${\mathbf Q}$ such that $\mathop{\mathrm{Spec}}({\mathbf C}) \times _{\mathop{\mathrm{Spec}}({\mathbf Q})} V$ is not integral.

Exercise 110.33.17. Give an example of a scheme $V$ which is integral 1-dimensional scheme of finite type over a field $k$ such that $\mathop{\mathrm{Spec}}(k') \times _{\mathop{\mathrm{Spec}}(k)} V$ is not reduced for some finite field extension $k'/k$.

Remark 110.33.18. If your scheme is affine then dimension is the same as the Krull dimension of the underlying ring. So you can use last semesters results to compute dimension.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)