Definition 111.36.1. Let $X$ be a scheme. A sheaf $\mathcal{F}$ of $\mathcal{O}_ X$-modules is *quasi-coherent* if for every affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ the restriction $\mathcal{F}|_ U$ is of the form $\widetilde M$ for some $R$-module $M$.

## 111.36 Quasi-coherent Sheaves

It is enough to check this conditions on the members of an affine open covering of $X$. See Schemes, Section 26.24 for more results.

Definition 111.36.2. Let $X$ be a topological space. Let $x, x' \in X$. We say $x$ is a *specialization* of $x'$ if and only if $x \in \overline{\{ x'\} }$.

Exercise 111.36.3. Let $X$ be a scheme. Let $x, x' \in X$. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_ X$-modules. Suppose that (a) $x$ is a specialization of $x'$ and (b) $\mathcal{F}_{x'} \not= 0$. Show that $\mathcal{F}_ x \not= 0$.

Exercise 111.36.4. Find an example of a scheme $X$, points $x, x' \in X$, a sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ such that (a) $x$ is a specialization of $x'$ and (b) $\mathcal{F}_{x'} \not= 0$ and $\mathcal{F}_ x = 0$.

Definition 111.36.5. A scheme $X$ is called *locally Noetherian* if and only if for every point $x \in X$ there exists an affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ such that $R$ is Noetherian. A scheme is *Noetherian* if it is locally Noetherian and quasi-compact.

If $X$ is locally Noetherian then any affine open of $X$ is the spectrum of a Noetherian ring, see Properties, Lemma 28.5.2.

Definition 111.36.6. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_ X$-modules. We say $\mathcal{F}$ is *coherent* if for every point $x \in X$ there exists an affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ such that $\mathcal{F}|_ U$ is isomorphic to $\widetilde M$ for some finite $R$-module $M$.

Exercise 111.36.7. Let $X = \mathop{\mathrm{Spec}}(R)$ be an affine scheme.

Let $f \in R$. Let $\mathcal{G}$ be a quasi-coherent sheaf of $\mathcal{O}_{D(f)}$-modules on the open subscheme $D(f)$. Show that $\mathcal{G} = \mathcal{F}|_{D(f)}$ for some quasi-coherent sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$.

Let $I \subset R$ be an ideal. Let $i : Z \to X$ be the closed subscheme of $X$ corresponding to $I$. Let $\mathcal{G}$ be a quasi-coherent sheaf of $\mathcal{O}_ Z$-modules on the closed subscheme $Z$. Show that $\mathcal{G} = i^*\mathcal{F}$ for some quasi-coherent sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$. (Why is this silly?)

Assume that $R$ is Noetherian. Let $f \in R$. Let $\mathcal{G}$ be a coherent sheaf of $\mathcal{O}_{D(f)}$-modules on the open subscheme $D(f)$. Show that $\mathcal{G} = \mathcal{F}|_{D(f)}$ for some coherent sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$.

Remark 111.36.8. If $U \to X$ is a quasi-compact immersion then any quasi-coherent sheaf on $U$ is the restriction of a quasi-coherent sheaf on $X$. If $X$ is a Noetherian scheme, and $U \subset X$ is open, then any coherent sheaf on $U$ is the restriction of a coherent sheaf on $X$. Of course the exercise above is easier, and shouldn't use these general facts.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)