Exercise 111.37.9. Let S be a graded ring. Let X = \text{Proj}(S). Let Z, Z' \subset X be two closed subschemes. Let \varphi : Z \to Z' be an isomorphism. Assume Z \cap Z' = \emptyset . Show that for any z \in Z there exists an affine open U \subset X such that z \in U, \varphi (z) \in U and \varphi (Z \cap U) = Z' \cap U. (Hint: Use Exercise 111.37.8 and something akin to Schemes, Lemma 26.11.5.)
Comments (0)