The Stacks project

Exercise 111.40.6. Higher dimensions.

  1. Prove that every invertible sheaf on two dimensional affine space is trivial. More precisely, let ${\mathbf A}^2_ k = \mathop{\mathrm{Spec}}(k[x, y])$ where $k$ is a field. Show that every invertible sheaf on ${\mathbf A}^2_ k$ is trivial. (Hint: One way to do this is to consider the corresponding module $M$, to look at $M \otimes _{k[x, y]} k(x)[y]$, and then use Exercise 111.40.5 (1) to find a generator for this; then you still have to think. Another way to is to use Exercise 111.40.3 and use what we know about ideals of the polynomial ring: primes of height one are generated by an irreducible polynomial; then you still have to think.)

  2. Prove that every invertible sheaf on any open subscheme of two dimensional affine space is trivial. More precisely, let $U \subset {\mathbf A}^2_ k$ be an open subscheme where $k$ is a field. Show that every invertible sheaf on $U$ is trivial. Hint: Show that every invertible sheaf on $U$ extends to one on ${\mathbf A}^2_ k$. Not easy; but you can find it in [H].

  3. Find an example of a nontrivial invertible sheaf on a punctured cone over a field. More precisely, let $k$ be a field and let $C = \mathop{\mathrm{Spec}}(k[x, y, z]/(xy-z^2))$. Let $U = C \setminus \{ (x, y, z) \} $. Find a nontrivial invertible sheaf on $U$. Hint: It may be easier to compute the group of isomorphism classes of invertible sheaves on $U$ than to just find one. Note that $U$ is covered by the opens $\mathop{\mathrm{Spec}}(k[x, y, z, 1/x]/(xy-z^2))$ and $\mathop{\mathrm{Spec}}(k[x, y, z, 1/y]/(xy-z^2))$ which are “easy” to deal with.


Comments (0)

There are also:

  • 2 comment(s) on Section 111.40: Invertible sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02AL. Beware of the difference between the letter 'O' and the digit '0'.