The Stacks project

Exercise 111.27.7. Blowing up: part I. In this exercise $R = Bl_ I(A) = A \oplus I \oplus I^2 \oplus \ldots $. Consider the natural map $b : \text{Proj}(R) \to \mathop{\mathrm{Spec}}(A)$. Set $U = \mathop{\mathrm{Spec}}(A) - V(I)$. Show that

\[ b : b^{-1}(U) \longrightarrow U \]

is a homeomorphism. Thus we may think of $U$ as an open subset of $\text{Proj}(R)$. Let $Z \subset \mathop{\mathrm{Spec}}(A)$ be an irreducible closed subscheme with generic point $\xi \in Z$. Assume that $\xi \not\in V(I)$, in other words $Z \not\subset V(I)$, in other words $\xi \in U$, in other words $Z\cap U \not= \emptyset $. We define the strict transform $Z'$ of $Z$ to be the closure of the unique point $\xi '$ lying above $\xi $. Another way to say this is that $Z'$ is the closure in $\text{Proj}(R)$ of the locally closed subset $Z\cap U \subset U \subset \text{Proj}(R)$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02EC. Beware of the difference between the letter 'O' and the digit '0'.