Lemma 18.12.1. Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ be a morphism of topoi. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. There is a natural map of sheaves of sets
which turns $f_*\mathcal{F}$ into a sheaf of $f_*\mathcal{O}$-modules. This construction is functorial in $\mathcal{F}$.
Comments (0)